DesnowNet survey and CycleSnowGAN

Duowen(Justin) Chen
Columbia University

duowenchenl998@gmail.com

Abstract

Data-driven methods for snow removal have been pro-
posed and research for recent years. To better understand
the specific problem of snow particles compared with other
weather particles, we review the first data-driven method
designed for snow particle removal called DesnowNet [7].
However, such method rely on predefined snow-particle rep-
resentation which doesn’t necessarily correct. We propose
an improvement taking advantage of the idea from Cycle-
GAN [12]. We implicitly model the rule that snow-particles
are being added to images and let Cycle-consistency help-
ing us reversely apply such rule to get a snow-removed im-
age. Meantime, our method won’t be constraint by the su-
pervised pairing input(Snow100K) which is using random-
ized behavior to approximate snow particles. This will al-
low us to use real-world snow data and real-world clean
data to do training.

1. Introduction

In Computer Vision, weather particles effect like hazing,
raining or snowing can impede all kinds of applications for
example the object-centric labeling as shown in [7]. Among
those atmospheric phenomenons, snowing is the hardest to
solve and affects accuracy the most because of its transpar-
ent nature, uneven density and irregular shapes. Such iden-
tities of snow particles make hand-craft snow removal tasks
intractable. The usage deep-learning method in the do-
main of weather particle removal has been proposed, such
as [1] and [3]. However, such methods failed to accom-
modate the particular features of snow particles. As from
the claim of [7], this is the first data-driven method pro-
posed to specifically solve snow removal problems. The
method deals with the complicated translucent and opaque
snow particles. They use separate underlying descriptors to
estimate and restore details lost to opaque snow particles
coverage and model snow translucency using a snow mask
and independent chromatic aberration map caused by color
distortion. However, such methods including their subse-
quent improvement all reply on the snow-particle represen-

tation defined by a linear equation. And at the same time
ignoring effects like veiling [2]. We choose to leverage the
ability of neural network and use its ability to model arbi-
trary functions. We model the rule of adding snow particles
using a DCNN-type network and using the idea from Cycle-
GAN that by ensuring cycle-consistency in both ways [12],
we should learn the rule to add or remove snow particles
at the same time. In this way, we don’t need to explicitly
model snow-particles but achieve better results. Meantime,
our method won’t require human-generated fake snow im-
ages. Therefore, making sure the model won’t inaccurately
deal with real-world data. In conclusion section, we admit
that our method quality will be highly dependent on training
data which will be the problem we seek to solve in future
works.

The content of the paper will be organized in the fol-
lowing way. We will first review some important building
blocks for DesnowNet in related work section. We will also
review CycleGAN [12] which our idea of improvement will
be based on. In Method section, we will describe the full
detail of the [7]. We will briefly show the improvement
ideas for [5] in Method section as well. And finally, we will
present our idea of improvement in method section. We will
show result of our implementation of DesnowNet compar-
ing with our implementation of CycleSnowGAN in result
section in the end.

2. Related Works
2.1. Inception-V4

The inception module was first proposed in Inception-v1
/ GoogLeNet. Inputs go through 1x1, 3x3 and 5x5 con-
volution layers and max pooling layers at the same time
and being concatenated together as output. Such a structure
ease the chosing of filter sizes and preserves different spatial
features. Batch normalization was the improvement from
Inception-v2. ReLU activation function was used to deal
with the vanishing gradient and saturation problem caused
by DCNN. The 5x5 convolution layer was also replaced
with two 3x3 layers which preserves reception field size but
shrinks parameter sizes. The 1x7 following 7x1 convolution

layer was introduced in Inception-v3 and stay unchanged in
inception-v4 as it preserves accuracy but reduces parame-
ter sizes to deal with the overfitting problem. Inception-v4
combines ideas from its predecessors and introduces more
inception blocks to learn spatial features at multi-scale re-
ceptive fields.

2.2. Atrous Pooling

Repeated convolution blocks and pooling layers s re-
duces significantly the spatial resolution of the resulting fea-
ture maps. To maintain obtain arbitrarily large field-of-view
without learning extra-parameters(de-convolution), Atrous
spatial pyramid pooling(ASPP) is proposed. It introduces
filters with value at different spatial locations and filled with
0 at the wholes between those spatial locations. Such a con-
volution can easily be implemented using a dilation convo-
lution fashion. With different sizes(levels) of field-of-view
being extracted, a pooling of either max pooling or sum-
ming up the features can be used to extract spatial features
considering different levels.

2.3. CycleGAN

The idea of CycleGAN is basically: 1. We train two dif-
ferent generators to transform from style 1 to style 2 and
vice versa. 2. We train the generator such that the generated
sample of style 2 are indistinguishable from real images by
a discriminator. 3. We make sure the generators are cycle-
consistent such that mapping from style 1 to 2 and back
again will reconstruct the original image. In method sec-
tion, we will show our idea of adopting this network to help
with snow removal.

3. Method

In this section, we first show detailed review of
DesnowNet. We then show later improvement by the same
group using GAN [5]. Finally, we show our idea of im-
provement which taking advantage of CycleGAN that im-
plicitly learn the rule of adding and removing snow parti-
cles.

3.1. DesnowNet
3.1.1 Pre-defined snow image representation

Suppose we have an image x € [0, 1]P*9*3 with snow par-
ticles where p and g are the size of the snow image. We call
the snow-free image y € [0, 1]P*9*3. If we define a snow
mask z € [0,1]P*9%! and a aberration map a € RP*7%3,
then the relationship between x and y can be presented as:

r=a0z+y0o(l—2) (D

where ® denotes element-wise multiplication, z shows
translucency of snow particles and a shows the color aber-
ration correction should be applied.

The paper split the recovery of y into two parts. First
is to recover the aberration and translucency caused by
snow particles, which is called translucency recovery mod-
ule(TR). The recovered image for this part is denoted as y’.
Second is to generate the residual parts of the snow-free im-
age that get completely blocked by snow particles, which is
called residual generation module(RG). The recovered im-
age for this part is denoted as r € RP*9%3_ And the final
recovered snow-free image is formed as:

g=y +r 2

3.1.2 Network structure and variable definition

To accurately model such features, the paper proposed a
network as described in 1. We now list out important for-

Translucency Recovery (TR)

Descriptor of translucency and aberration recovery module for snow-mask (z) and aberration correction (a)

D () Rt
X — < Inception-V4 it a» fi =E
t=—> Y’

Pyramid maxout

AE
Pyramid maxout

Descriptor o esidual generation recovery module for residual generation

D, Di(fe f, Rr
™ Inception-V4 J")@—r' Pyramid maxout —_—Tr

Residual Generation (RG)

Figure 1. Here, D; and D, are the descriptors to extract features
from input. D; takes the image as input and D, takes the image
being applied snowmask and aberration correction as input. R
and R, are the recovery block. R; consists of a SE block using
pyramid pooling to reconstruct snow mask 2 and AE block using
the same structure to reconstruct aberration correction a. And fi-
nally R, block is used to recover the residual obscured by snow
particles.

mulas used to represent each variable used in the network.
Denoting D;(x) and D,.(x) as the output of inception-v4
networks. The ASPP block is constructed by

fi = ln—oA2n (Di())
= HZ:OA?" (Dr(fC))

Here Asn is the Atrous convolution layer. f. will be de-
fined just a moment. f, and f, are the feature output of
ASPP for TR and RG respectively. || operator stands for the
concatenation operation. Here, -y is the parameter control-
ing the level or field-of-view of the ASPP. We choose v = 4
to align with the [7]. The SE and AE block uses a pyramid

3)

maxout structure to select different spatial features which is
defined as

a = AE(ftv ﬁ)

= max(convi(f,), convs(f,) ... convag_1(f,))
X 4
z = SE(.fth)

= mazx(convi(f,), convs(f,)...convag_1(f;))

Here, subscript of conv denotes the kernel size of the oper-
ation. We choose 8 = 4 to align with the [7]. And convs
and conv; are implemented using the vector version as in
inception-v4. And y’ is constructed as

(t—a®2)
1-—-mo2

yY=moz+-mo)
This is just a reformation of (1) and mask m is introduced
to prevent dividing by 0 where m; = 1 when 2; = 1 and
—m is the logical negation of mask m. 1 is of same size of
2 with entries to be 1. And finally, for residual generation,
we first define f. used in (3) to be y’ Za which is the recov-
ered image after being applied snow-mask and aberration
correction. The operations then are defined as:

T = Rr(”l:oAT" (DT(fC)))
= Rr(.fr)

5 ©)
= Z conva;—1(fr)
=0

Here, instead of using the pyramid maxout, summation is
used here to aggregates the multi-scale features to model
the variation in snow particles.

3.1.3 Loss Function

We now define the loss function. As suggested from [6] that
pixel-wised MSE loss can’t simulation of various viewing
distances pertinent to human vision. Therefore, a simple
pyramid maxing structure is used in the loss function:

N(m,1n) = || Py(m) — Py (mh)l3 Q)
=0

Here, P,: is just a maxpooling layer with kernel size 2¢ and
this captures the loss from various viewing distances. m
or 1 are images with same size. And the total loss is then
defined as:

»Coverall = N(y,7 y) +N(ga y) +)‘2-/\[(27 Z) +a Z ’U)2

3
Here, \; = 3 and a = 5e~ % > w? is the L2 regulariza-
tion.

3.2. DesnowGAN

In this section, we will show more recent paper [5] that
utilize the GAN structure but use similar way of represent-
ing snow particles. The snow image is still represented
as (1). As the paper points out, the main problem with
DesnowNet is its super large hyperparameter size intro-
duced by inception-v4. Therefore, the fundamental building
block is substituted by ResNeXt [10]. Meantime, they point
out D, block which in DesnowNet uses the full capacity of
a inception-v4 network is also a waste of parameter. There-
fore, a refinement block is used to substitude the original D,
block and the r prediction is now combined with z predic-
tion and jointly get optimized. Also, instead of preserving
the input image size in DesnowNet, a deconvolution layer is
used to recover the original image size. And finally, a dis-
criminator loss is applied combined with the Loss defined
in (8). The discriminator loss is defined as :

Leritic =]EQ~IP’G [D(Q)] -]EyNIP’T- [D(y)]’
~ 2
Lop = Eyory [(IVsD@), ~ 1)) ©)
£Discriminator = ‘Ccrilic +)\gpﬁgp,

Here, Liic is the WGAN-GP GAN loss that the probabil-
ity predicted by the discriminator say ¢y and ¢ being actual
data should be close. L), this the term enforces 1-Lipschitz
smoothness.

3.3. Improvement: CycleSnowGAN

We see snow particles are represented in a different way
than what DesnowNet represents in JSTASR-DesnowNet
[2]. However, such a way of modeling snow particles
should be able to be learned as an implicit rule that is similar
to a style-transfer. We adopt the idea from DesnowNet that
spatially varying features should be extracted using ASPP.
We use ResNet [4] or UNet [8] with skip connection as the
building block for both generator and use a DCNN as the
discriminator. This structure is typically used in CycleGAN
and we added in an extra module of ASPP and convolu-
tion layer to extract spatial features. We prefer using UNet
with skip connection as it captures information from differ-
ent resolution and we add a ASPP to each different resolu-
tion as in [5] to capture varies snow particle sizes.

We also see in DesnowNet [7], they use approximated
snow particles lying on top of real images to create effects
like snowing. However, such effect seems unreal from hu-
man perspective and we can expect very different picture in
snow days. We show some example below what the unreal
images looks like in 2.

As networks are more capable of interpolation than ex-
trapolation, such generated images used in training may
cause problem of extrapolation required by testing in real-
world. Therefore, we propose to use CycleGAN as the

Figure 2. first row images are generated snow images and second
row iamges are real world ones. We see comparing (a) and (d), no
snow will happen in sunny day which means snow removal won’t
happen for a sunny sky in real-world. Comparing (b) and (c), we
see large patch of losing image information is rare and real-world
snow particle tend to be more gray because of the foggy or white
weather. Comparing (c) and (f) we see, particles won’t be visible
in unlighted areas like what (c) has.

building block for our method. The reason is straight for-
ward that CycleGAN won’t require paired up data like what
Pix2pix or DesnowGAN [5] requires. Therefore, real-world
images can be used to make sure our trained network fits to
the real world image distribution instead of the fake gener-
ated image space.

Our network takes the structure described 3. The loss we
take is in same definition as CycleGAN, which includes the
GAN loss for the two discriminator which is defined as:

Lean (G7 Dy, X, Y) = EyNPdam (y) [log Dy (y)]
+ Eorposa () [l0g (1 = Dy (G(2))]

(10)

where G is the generator’s output and Dy is the discrimi-

nator in domain Y. In our case, Y or X just stands for either

clear data or snow data. Lgan (F, Dx,Y, X) is defined in

a similar way where F' is the other generator. As for recon-

struction loss, the pixel-wise difference loss is used.

Leye (G, F) = Egropye, () [1F(G(2)) = 2[1]
+ Ey""Pdmz\ (y) [HG(F(y)) - y”l]
And the total loss is defined below with A\ being hyperpa-

rameter controlling reconstruction loss. We use 0.1 in our
case:

LOverall :EGAN (Fa DX7 K X) + EGAN (G7 DY? Xa Y)
+ My (G, F)

(1)

(12)

Reconstruction Loss (as close as possible)
probability of the image is fake or real

discriminator for learimage

>

discriminator for snow image

h i / ; 5
probability of the image is fake or real /
Reconstruction Loss (as close as possible)

Alternative Generator Structure

Generator takes snow image generating clearimage

Generator takes clearimage generating snow image

Figure 3. Notice there is only one pair of generators and the re-
construction loss ensures cycle consistency

However, we do seek to further improve the reconstruction
loss as the pyramid loss which is used in [7] or as a loss
network as proposed in [6].

4. Result

We show our result comparing different implementations
of networks. Notice that because of the limitation of our
computing power, we shrinked the size of inception-v4 to
fit into our GPU. We also put more results in the Appendix
A if the reader is interested.

4.1. Snow removal

We show the average (1000 images) PSNR result of Cy-
cleSnowGAN comparing with the result from origianl [7]
paper in Table 1. Notice in table 1 in [7], the number of
large particle masks is significantly less than the other two.
Since GAN is highly probabilistic sensitive, we do expect
it works better on snow-mask with smaller particles. To
address this issue, we can balance out the training data in
future works.

We show some visual result which is more straight for-
ward as a comparison in 4.

4.2. Snow generation

We further show the ability for CycleSnowGAN to learn
the generation of snow particles implicitly below in 5.

5. Limitation and Discussion

We also argue that with a longer training and tunning
time, our implementation of both DesnowNet and Cy-

Network PSNR
DesnowNet (Paper) 30.1741 [7]
DesnowNet (JSTASR [2]) 25.58 [2]
CycleSnowGAN (UNet + ASPP) 27.4979
CycleSnowGAN (ResNet + ASPP) 24.4876

Table 1. Notice, we didn’t introduce extra tuning and being much
more light-weighted. Notice we also didn’t try out the structures
mentioned in Future Work section. With carefully tuning and in-
troducing pyramid pooling, ResNeXt and Loss Network, we think
our result will be better. Notice DesnowNet’s performance varies
across different papers, we list two PSNR reported, one form
DesnowNet paper, one from JSTASR paper

@) Snow Image: © (e) Clear Image:

Figure 4. We see PSNR may not be a great comparison tool since
slight color-style change may cause huge PSNR change, which
may not directly evaluate the task of snow coverage or removal.

cleSnowGAN should perform much better than this result.

We admit that our result highly depends on training set
quality. We see artifacts for large snow patches and this is
because large particles has smaller dominance compared to
smaller ones, especially if we do random cropping. Also,
We haven’t test our idea on training on real-life dataset be-
cause lacking of data. However, we do think this will work
on realistic datasets.

6. Conclusion and Future Works

We reviewed DesnowNet [7] which currently has no
model or benchmark being implemented. Due to some
ambiguity in implementation detail in [7] and constraints
in computational resources, the result of our training is

(b) Snow100K (c) ResNet Generator

(a) Original

(d) UNet Generator

Figure 5. We see variation of snow particle sizes and translucency
being generated correctly by the CycleSnowGAN.

not comparable with the original paper. However, due to
these constraints, we refrain from questioning the result of
DesnowNet.

We also proposed another CycleSnowGAN which is
more light-weighted and provides implementation based on
released CycleGAN pytorch implementation. We showed
our result for snow removal is comparable with the results
showed in DesnowNet paper and we also showed its capa-
bility to implicitly encode snow-particle generation rule and
generate realistic snow images.

We seek to further improve this method for training on
real-life snow images as we don’t require paired data and
snow-mask. We also seek to further improve CycleGAN en-
coder and decoder structure and loss function to work more
suitably for snow removal. For example, ResNeXt [1]
block, Pyramid Pooling Layers, Loss Network [6] or UC-
TransNet [9] can be used.

References

[1] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and
Dacheng Tao. Dehazenet: An end-to-end system for single
image haze removal. IEEE Transactions on Image Process-
ing, 25(11):5187-5198, Nov 2016. 1

[2] Wei-Ting Chen, Hao-Yu Fang, Jian-Jiun Ding, Chen-Che
Tsai, and Sy-Yen Kuo. Jstasr: Joint size and transparency-
aware snow removal algorithm based on modified partial

(3]

4

—_

(5]

[6

—_

(7]

(8]

(9]

[10]

[11]

[12]

convolution and veiling effect removal. In European Con-
ference on Computer Vision, 2020. 1,3, 5

Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao,
and John Paisley. Clearing the skies: A deep network archi-
tecture for single-image rain removal. /EEE Transactions on
Image Processing, 26(6):2944-2956, Jun 2017. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 3

Da-Wei Jaw, Shih-Chia Huang, and Sy-Yen Kuo. Desnow-
gan: An efficient single image snow removal framework
using cross-resolution lateral connection and gans. [EEE
Transactions on Circuits and Systems for Video Technology,
31(4):1342-1350,2021. 1,2, 3,4

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution, 2016.
3,4,5

Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jeng-Neng
Hwang. Desnownet: Context-aware deep network for snow
removal. CoRR, abs/1708.04512,2017. 1,2,3,4,5

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015. 3

Haonan Wang, Peng Cao, Jiagi Wang, and Osmar R. Zaiane.
Uctransnet: Rethinking the skip connections in u-net from a
channel-wise perspective with transformer, 2022. 5

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks, 2017. 3

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks, 2017. 5

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Computer Vision (ICCV),
2017 IEEE International Conference on, 2017. 1

A. Appendix: More results for CycleSnow-
GAN and DesnowNet

A.l. snow removal

A.2. snow generation

(a) Snow100K (b) ResNet Generator

(c) UNet Generator

A.3. cycle style

row one: snow image generated clearimage reconstructed snow image

row two: clear image generated snow image reconstructed clear image

	. Introduction
	. Related Works
	. Inception-V4
	. Atrous Pooling
	. CycleGAN

	. Method
	. DesnowNet
	Pre-defined snow image representation
	Network structure and variable definition
	Loss Function

	. DesnowGAN
	. Improvement: CycleSnowGAN

	. Result
	. Snow removal
	. Snow generation

	. Limitation and Discussion
	. Conclusion and Future Works
	. Appendix: More results for CycleSnowGAN and DesnowNet
	. snow removal
	. snow generation
	. cycle style

