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Abstract

We introduce a hybrid pipeline that combines classical fluid simulation with modern generative video models to produce high-
quality, controllable fluid effects without implementationally difficult solvers or costly ray-tracing. First, a lightweight physics-
based simulator enforces core properties like incompressibility and lets artists specify layout, boundary conditions, and source
positions. Second, we render a simple ‘control video’via real-time rasterisation (diffuse shading, masks, depth) to capture scene
structure and material regions. Third, a text-guided diffusion transformer (e.g., VACE) treats this control video as a canvas,
refining it by adding foam, bubbles, splashes, and realistic colour blending for multiple materials. Our method leverages pre-
trained video generators’ implicit physical priors, while masking and noise-warping ensure precise, per-material control and
seamless mixtures in latent space. Compared to purely simulation-based or generative model based text-only approaches, we
avoid implementing specialised multiphase algorithms and expensive rendering passes, yet retain full artistic control over fluid
behaviour and appearance. We demonstrate that this training-free strategy delivers photorealistic fluid videos, supports diverse
effects (multiphase flows, transparent media and wet foams), and simplifies the artist’s workflow by unifying simulation, shading,
and generative rendering in a single, extensible framework.

Keywords: controllable video generation with generative models, physically grounded fluid rendering, physics-guided fluid

prior modeling
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1. Introduction

Various fluid phenomena have been studied in physics simulation
since the introduction of Stable Fluids [Sta99], and realistic fluid
effects are now ubiquitous in film and game production. Achiev-
ing visually compelling results depends both on sophisticated sim-
ulation methods for physical accuracy and on rapidly evolving ren-
dering techniques to convert simulated data into photorealistic im-
agery. To capture specific behaviours—such as foam, fluid mixtures
and splashes—specialised simulation algorithms must be incorpo-
rated [WFS22, RLY*14, PAKF13]. In many cases, sparse or adap-
tive grids [AGL*17, XCW*20], narrowband techniques [SWT*18,
FAW*16] and GPU implementations are necessary to reach the de-
sired quality, but these optimisations are difficult to implement and
reproduce. Beyond simulation, rendering effects like whitewater
and underwater bubbles further increase the pipeline’s complexity

and computational cost. Inspired by recent advances in generative
models, we propose a nontraditional approach to alleviate these bur-
dens.

Recent generative video models have achieved unprecedented
quality [WWA*25, Gen24, YTZ*25, Ope24, Kua06]. Fluid synthe-
sis, in particular, remains a challenging benchmark for physical ac-
curacy [ZXM*25]. Current approaches either rely on large language
models to inject physics priors—assuming that textual guidance
can enforce correct behaviour [ZXM*25] or use 2D optical-flow
techniques in latent noise space [MSAA*24], which fail to capture
fluid’s inherently 3D nature. Moreover, existing generative frame-
works lack the layout-driven controllability required by graphics-
based fluid pipelines: specifying boundary conditions, source posi-
tions, and scene layout is difficult to express and control via human
language alone. At the same time, massive training datasets embed
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Figure 1: We introduce Fluid Composer, a novel fluid detail composer and renderer that transforms greyscale shaded videos from a basic
fluid simulator into rich fluid effects like wet foam, multi-material mixtures, and transparent water splashes, while automatically applying

solid textures, materials, and lighting inferred from textual descriptions.

both realistic appearance and a degree of physical plausibility in
models like DiTs [PX23], which we can leverage.

Therefore, we propose using a video generator as a ‘fluid detail
composer’ and ‘appearance renderer.” The pipeline proceeds as fol-
lows: (1) Physics-based simulation. A base fluid simulator (e.g.,
Stable Fluids or PIC/FLIP) enforces core fluid properties—such as
incompressibility—and gives artists precise control over scene lay-
out (Section 3.1); (2) Real-time shading and control estimation.
We render a lightweight ‘control video’ of the simulation, consisting
of simple diffuse shading, using a real-time shader (Section 3.2); (3)
Generative detail and material editing. A language-guided video
generator refines the control video by adding fluid details (foam,
bubbles, mixtures), assigning appropriate materials and colours (in-
cluding multiple fluid types or solid objects), and producing a final
photorealistic sequence (Section 3.3).

By combining a classical simulator with a generative model, we
preserve the traditional graphics workflow, scene layout to simula-
tion to rendering, while offloading complex phenomena (multiphase
flow, mixture models, etc.) and rendering (skins, foams, etc.) to the
generative stage. This approach provides artists with full control
over the simulation’s physics and scene layout, yet avoids imple-
menting specialised solvers for every fluid effect and saves timing
issues raised in raytracing.

In summary, by taking advantage of existing video-generation
models with controls (e.g., VACE [JHM*25]), we propose a
training-free approach that enforces physics priors as shaded video
from a basic fluid simulation, while giving artists full control over
scene generation. Our method enables easy fluid detail creation and
material editing. By using masking and noise warping, it supports
multiple material composition in a single pass.

‘We summarise our contributions as follows:

1. A unified framework for simple yet high-quality fluid-
simulation generation and visualisation using video diffusion.

2. A practical way to enforce physics priors for fluids in a video-
generation pipeline.

3. A fast fluid-rendering pipeline with modified controllable video-
generation model.

4. A realistic material and fluid-detail composition method via a
diffusion framework.

2. Related Work
2.1. Video Generation and Control

Video Generation. Diffusion-based transformers have rapidly ad-
vanced text-to-video synthesis. Early closed-source systems like
OpenAl’s Sora [Ope24] kicked off the era of high-quality, pro-
fessional video generation, followed by public previews of Kling
[Kua06], Luma 1.0 [Lum06], Gen-3 [Run06], Vidu [BXY*24],
Pika 1.5 [Pik10], Movie Gen [PZB*] and Veo 2 [Deel2] by year’s
end, each pushing frame-level fidelity, physics realism, and support
for multimodal prompts. Concurrently, the open-source community
has built on latent diffusion and transformer blocks to scale video
models [Gen24, KTZ*24, HCB*24, ZPY*24, LGC*24, JSL*24,
YTZ*25]. U-Net [RFB15] extensions such as VDM [HSG*22] in-
troduce full 3D convolutions, while 1D temporal with 2D spatial
attention [ZWY*22, WYC*23, GYR*24] hybrids reducing com-
putations. Diffusion Transformers (DiTs) [PX23] replace all con-
volutional structure with pure transformer layers, yielding supe-
rior image fidelity [CYG*23] and easily transferring to video orig-
inal DiTs [PX23, HCB*24] and MM-DiT’s multimodal concatena-
tion of text embeddings [Gen24, KTZ*24]. Spatio-temporal VAEs
[HCB*24, WWA*25] then compress video into compact latents,
enabling billion-scale model pre-training on trillions of tokens
and real-time inference on consumer GPUs. Subsequent models
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such as LTX-Video [HCB*24] scaled these approaches to real-
time, high-resolution generation, while open-source variants Mochi
[Gen24], CogVideoX [YTZ*25], Hunyuan [KTZ*24] and Wan 2.1
[WWA*25] have further closed the gap with proprietary systems.
Despite these gains in visual fidelity and realism, most of these mod-
els rely solely on text or image conditioning and offer limited mech-
anisms for precise, physics-aware control of emerging content.

Controlling and Edition. Video diffusion models have been ex-
tended with a variety of conditional controls to guide spatial struc-
ture, appearance, and motion. One group of approach includes pixel-
aligned signals—depth, pose, scribble, optical flow for video-to-
video editing tasks [ZRA23, ZWJ*23, HX23, WYZ*23, HCL*23,
JMP*24]. Along this track, task unified visual control over genera-
tion model was proposed for images [QZY *23, HIP*24, XWZ*25]
and, recently extended to video generations [JHM*25]. Beyond vi-
sual signal control, inloop physics simulator for video generation
are explored on both rigid bodies [LRGW24], softbodies [CJL*25],
clothes [XZJJ25] and more general cases [MSAA*24, GYL*25].
Such method usually starts from an image, and apply simulation
methods like PBD [MMC16] guide the video generation from the
input image but mostly only limited to simple physics behaviours.
More recent work [LYL*25, GHF*25] extends these to more diver-
sified physics phenomenons.

2.2. Fluid Simulation and Rendering

Basic Fluid Simulation. Since the introduction of Hamholz de-
composition applied on the Naive Stokes equation computation
in Stable Fluid [Sta99] and its extention to air-liquid interface
[EFFMO02] through the introduction of particle level set (PLS), nu-
merous methods in this field are being explored. We shall mainly
focusing on reviewing free-surface-related methods as those being
most related. Existing fluid simulation methods usually categorised
to pure Eulerian methods [Sta99, LCPF12, EMFO02, IGLF06], pure
Lagrangian methods [BT07, MCGO03, SP09, DGWH*15, LBC*24]
and Hybrid methods [ZB05, HHKO08, RWT11, AT11, JSS*15,
FGW#*21, FAW*16]. Most of the time, surface tension driven phe-
nomenons like milk crown tends to favour pure Eulerian methods
due to the accurate level set value computation [ZZKF15] while
splashes tends to favour hybrid methods due to the less damping dur-
ing advection. As for the divergence-free condition for fluid, current
methods either use weakly compressible enforcement for real time
performance [MCGO03, BTO07], or applies multigrid Poisson solver
for pressure projection [MST10]. Although the basic fluid simulator
is rather simple and clean for implementation, special effects in fluid
usually require special treatment and are usually hard to achieve
and render.

Special Fluid Effects. Special fluid effects, depending on fluid
types, vary. In the scope of this study, we focus on free-surface
fluids. For free surface fluid, the most interesting effects include
foams like beer foams and wet foams, bubbles and mixture mod-
els. For foams, Losasso et al.[LTKF08] coupled SPH with PLS
for simulating foams over ocean waves. Ihmsen et al. and Bender
et al.[IAAT12, BKKW18] introduced procedual wet foam gener-
ations using SPH methods. The current state-of-art for wet-foam
simulation comes from [SWBD20, WFS22] combining FLIP with

a SPH simultion of foams. For bubbles, Thiirey et al.[TSS*07,
KSK10] used an ad-hoc methods to simulate bubbles under water.
Kim et al.[KLL*07] used two-phase flow for more accurate bubble
behaviours. Patkar et al.[PAKF13] considered the state equation for
compressiblity of bubbles. Besides these, Li et al.[LMLD22, LD23]
tried to solve two-phase flow using LBM methods and reaches as-
tonishing result. For mixtures, Ren et al.[RLY*14] used multiphase
SPH for fluid mixtures and [LSSF06] applies on grid-based meth-
ods. Those methods, though physically based or intended, all re-
quire special treatment and implementation and are only partially
unified in some non-opensource commercial software like Houdini
or WetaFX [LSD*22].

3. Overall Pipeline

We leverage diffusion models to produce complex fluid phenom-
ena while remaining faithful to the classical graphics pipeline, pre-
serving artists’ creative freedom and control, and we rely on a
lightweight fluid solver solely to enforce the core physical be-
haviour. Our method is divided into the following components
(see Figure 2): (1) Fluid Simulator as Control and Physics Prior;
(2) Graphics Shader, Masking, and Depth/Scribble Estimation; (3)
Controlled Diffusion Video Generator as Detail Creator, Material
Synthesiser, and Renderer. Below, in each individual subsection, we
describe each component in detail.

3.1. Fluid Simulator

We implemented a fluid simulator based on the APIC/AFLIP
[JSS*15, FGW*21] method in Taichi [HLA*19], enabling fast
GPU computation across all scenarios presented. To enforce a
divergence-free velocity field and improve volume preservation, we
implemented a GPU-accelerated MGPCG solver for the Poisson
equation. For free-surface pressure projection, we employ the stan-
dard ghost-cell [GFCKO02] treatment and, for simplicity, omit both
surface tension and viscosity. We support Dirichlet and Neumann
boundary conditions to accommodate a variety of use cases. Sim-
ulation outputs are represented as meshes obtained via marching
cubes on the grid-stored level set, using the particle union technique
proposed in [FFO1, BB12], which dramatically reduces storage and
computational overhead compared to handling millions of particles.
Because our fluid solver serves solely as the physics controller for
basic fluid motion—volume preservation, simple surface waves, and
splashes—any other solver may be integrated into the pipeline ef-
fortlessly.

3.2. Graphics Shader

Real-time rasterisation offers an efficient way to preview view di-
rection and camera motion, even though it does not match the photo-
realism of ray tracing. Rasterisation also provides native support for
transparency and masking throughout the graphics pipeline. We ex-
ploit transparency from fluid and solid elements, solid—fluid masks,
and fluid—material masks to exert fine-grained control over mate-
rial interactions. By default, we use Blender’s viewport renderer
with its standard material settings: the resulting shaded videos con-
vey only shape information and serve as the basis for subsequent
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Fluid Simulator Graphics Shader Controlled Diffusion Video Generator (Sec. 4.3)
(Sec. 4.1) (Sec. 4.2) Dual Control (Sec. 5.1)
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Figure 2: Overview of the proposed pipeline. (Left) Artists specify scene layout—initial, boundary, and source conditions—which are simulated
by a naive free-surface fluid solver to produce physics priors. (Centre) The simulated volume is converted to a 3D mesh and shaded into a
control video, depth and scribble maps are extracted and our transparency-blending mask is applied. (Right) These control signals, together
with textual descriptions of fluid and solid materials, are fed into the modified VACE diffusion block, which supports multi-material mixing
and generates the final photorealistic fluid video without any changes to the underlying simulator:

depth and scribble estimation. For depth prediction, we employ the
method of [RLH*20], and for generating scribble-style art, we fol-
low [CDI22]. The produced depth maps and scribble videos then
act as control inputs to the VACE video-generation model. Here,
the two control videos can also be generated using graphics soft-
wares such as Blender or Houdini, but to reduce the dependencies
on the prior knowledge of using such softwares, we choose to stick
with the pipeline from VACE.

3.3. Controlled Diffusion Video Generator

Our controlled video generator builds upon the WAN video gen-
erator [WWA*25] and the controllability framework of VACE
[JHM*25]. VACE accepts depth maps or scribble pictures as con-
trol signals, together with a text prompt, to generate a video. How-
ever, we find this approach inadequate for fluid-centric tasks. First,
depth estimation typically omits the fine-scale motion and surface
geometry of fluids. As shown in Figure 4, using only depth control
fails to reconstruct the Armadillo’s mesh details, while the genera-
tor hallucinates fluid details in regions of ambiguous depth—often
misaligned with the artist-created shaded video. Scribble-based con-
trol, by contrast, introduces excessive noise in most cases. Sec-
ond, without explicit material segmentation, relying solely on lan-
guage prompts produces unrealistic outputs even in simple scenar-
ios (Figure 3). In more complex cases—such as fluid mixtures—
masks are required to specify material blending. Finally, effects like
transparency cannot be conveyed through text alone. To overcome
these limitations, we introduce extensions to the VACE pipeline—
described in the next section—that enable precise control over fluid

Figure 3: We show without the material separation mask, video
generation models cannot accurately capture the textual descrip-
tion of materials.

appearance, material separations and mixtures, and transparency,
thereby supporting a wide range of desired fluid effects.

4. Control Signals

As we mentioned in previous section, three major concerns need
to be addressed specifically for fluid targeted generation within the
VACE model. We shall elaborate each of them.

4.1. Dual Control for Generation

To faithfully replace traditional fluid rendering, a central challenge
is accurately capturing the myriad of small water droplets and fine
mesh details produced by fluid simulations. As shown in Figure 4,
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Depth + Scribble

Scribble Only

Figure 4: We show without our dual control for both depth and
scribble, either the shape of armadillo is not faithfully preserved or
the material is generated incorrectly.

depth estimation alone cannot recover these fine-scale features.
Conversely, scribble-based control often introduces spurious edge
noise in fluid regions, resulting in a grainy appearance. Motivated by
the observation that diffusion models tend to generate coarse struc-
ture and colour in early denoising steps and finer details in later
steps [SHWC25], we propose to use depth control in early stages
for colouring and general shape control and taking advantage of
the detail control of scribble signals in later stages. In such way,
grainy feelings of scribble-only control are mostly removed due to
pre-determined colouring from early stage depth control genera-
tion. Meanwhile, the later stage scribble control adds the details ne-
glected from depth-only signals. In actual implementation, we use
the first 20% of timesteps with depth control and later 80% with
scribble controls. We refer readers to Section 6.5 for ablation study
on the choice of the parameters.

4.2. Material Separations and Mixtures

Video diffusion models still adapts attention mechanisms. Text
prompts are first encoded by a CLIP encoder [RKH*21] and then in-
jected into the DiT backbones via cross-attention. However, when a
single prompt references multiple materials, the resulting condition-
ing can become ambiguous (see Figure 3). To address this, we sup-
ply distinct text embeddings for each material. Concretely, for ma-
terial i we extract a binary mask M; € {0, 1}77*#F>*Wr in the shader
domain and downsample it to the VACE model’s latent dimensions
T, x Cp x H, x W,, where the subscript *r denotes video-domain
dimensions (frames Ty, height Hr, width Wy ) and %, denotes latent-
space dimensions (frames 77, channels C;, height H;, width W}).
Let Z, be the noisy latent image at diffusion step 7. We then ap-
ply the following modifications for material separation and mixture
handling.

Material Separation. At diffusion step 7, we compute the
material-wise separated update by

LN = " M; @ Di(Gu(Z) + G (L)) M

where Z, is the noisy latent image at step ¢, G, and G,, are the un-
conditional and context-conditional generators, B is the classifier-
free guidance (CFG) scale, D, denotes the denoising operator, and
M, is the downsampled binary mask for material i. Here, CFG
[HS22] follows from most of the recent DiT models [KTZ*24,

WWA*25, HCB*24] where guidance from prompts are enforced.
And the strength of guidance is controlled by 8. The element-wise
product ® ensures that only region i is denoised using its own textual
embedding c;. For pixels where multiple masks overlap, we choose
one material’s mask and set the others to zero during this separa-
tion pass.

Material Mixture. We denote the textual embedding for the mixed
material as cpix. Let the mixture injection begin at diffusion step
t, within a total of f,, steps. We define the latent update for the
mixture region by

T = Muix ® (4D (Gu(T) + G,y (1)

+ (1 —u, )Iisi;iaralion) + (l _ Mmix) ® I,'Siliammn (2)

where the interpolation weight

t—t, 4
ut (ttotal - ts - 1) ( )

controls the blend speed via the exponent y and #,. Although the
masks are combined in a discrete fashion, this simple schedule pro-
duces coherent mixtures. All regions start from pure Gaussian noise,
which conceals seam artifacts, and each denoising step D, attends
to the full latent image, naturally enforcing consistency across ma-
terial boundaries. The composite mask M., is obtained by aggre-
gating each material’s binary mask over all frames: for every spatial
location, My is set to 1 only if all individual material masks have
been active at least once at that location during the video, preventing
unrealistic colour shifts in areas that contains only single materials
(see Section 6.5).

4.3. Transparency of Meshes

Transparent materials require special handling in fluid-oriented gen-
eration. While uncoloured transparency—such as in water tanks or
clear wine glasses—can be rendered directly via standard raster-
isation, coloured media like tinted glass or beverages (e.g., beer,
wine) demand explicit guidance. Rather than expecting the diffu-
sion model to infer accurate colour blending from text alone, we
instruct the model to use the blended colouring of the transparency
material and other materials. The key distinction between transpar-
ent and opaque-material scenarios is that transparency permits mul-
tiple materials to coexist at a given pixel, causing the sum of their
mask values to exceed one. To handle such overlaps, we extend our
mixture strategy: wherever n material masks overlap, we replace
the individually separated outputs with their simple average in la-
tent space, that is, 1Z°7°" thereby ensuring a cohesive blend of

i i > n I.+l
all contributing materials.

4.4. Material Assignment

Now, we have everything in place, the material for each mask is di-
rectly assigned through language guidance. The material property
will directly be included in the prompt guidance and each mask
need to be attached with one prompt. As an example, for Figure 5,
the prompt for the two masks will be ‘marble textured board’ and
‘dark caramel coloured coke cola’ and the overall consistency for
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Target Wi VACE-depth VACE-scribble Ours

Figure 5: Text prompt: ‘A marble textured board sliding in a tank
of dark caramel coloured coke cola. The video should have a single
coloured background.” We see other methods either fail to preserve
the shape of the objects in the target video or cannot accurately
capture the material of fluid and board.

the video is given by the entire prompt ‘marble textured board
sliding in a tank of dark caramel coloured coke cola.” The video
should have a single coloured background.

In summary, we introduce three targeted enhancements, that is,
dual control, material blending and transparency blending, to the
VACE framework to support realistic fluid effects; our quantita-
tive and qualitative results are presented in the subsequent sec-
tions together with ablation studies on the choices we made de-
scribed above.

5. Implementation Details

Fluid Simulation. All of our simultions are performed under the
resolution of 128 with CFL number set to 0.5. For cases where more
splashes are desired, for example, the Cruiser Scene in Figure 1, we
adopt AFLIP as proposed in [FGW*21]. Otherwise, APIC [JSS*15]
is used for simulation. We conduct all simulations on a Nvidia RTX
5090 GPU and it takes at most 20-30 min of simulation time for
generating the simulation data for the videos we present.

Video Generation. All video generations are performed using a
single Nvidia H100 GPU where the base model set to be WAN-
14B DiT model with 20 denoising steps to balance the speed of
generation and output video quality, as we did not observe obvious
worsen quality of generated video compared with using 50 denois-
ing steps with our method. For each video shown in this paper, the
diffusion process takes 10 min to complete. In comparison experi-
ments, WAN videos are generated with prompt enhancement being
turned on, while VACE experiments are turned off by default. All
comparison experiments use the same input prompt and materials
across the four methods being compared.

6. Experiments

We evaluate our method both qualitatively and quantitatively un-
der various scenarios. We mainly focus on seven daily fluid mate-
rials and various kinds of solid materials. We conducted 20 base
fluid simulations with diverse initial and boundary conditions. With
the 20 base fluid simulations, 176 different videos are generated
with 88 different kinds of fluid and solid combinations. Some exam-
ples of fluid material include wine, water, beer, cola, chocolate and
milk. Solid materials are more diverse with allowing DiTs to assign

Target milk+chocolate beer+cola

cola+chocolate

motcha+wine

beer+chocolate milk+wine

Figure 6: In this figure, we show our method is capable of handling a varity of material blending and composing details of fluid like foams
inferred from fluid material. All of the videos are generated using the prompt: ‘MATERIALI and MATERIAL2 poured down into an empty
squared tank and mixed together. The final colouring should be the mix of the two materials.” where MATERIALI and MATERIAL?2 are the

two fluid materials being mixed here.
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-
=
el

Target basketball+water tennis+water golf+water wood+beer iron+wine football+water

Figure 7: We show by providing the shaded video on the left using a simple APIC fluid simulation without any two-phase flow techniques,
our model and compose under fluid bubbles based on text prompts and applies different solid materials with a single word change.

Target Beer Wine Cola Sea Chocolate

Figure 8: We show the scene of a ship moving in a circle on different fluid materials. Wet-foams and bubbles automatically appear from the
video generation pipeline. All of the videos are generated using the prompt: ‘An iron-built ship moving on the surface of a tank of MATERIAL.
The ship is moving in a circle trajectory. Focus on the trajectory and the surface details due to its motion. The video should have a single
coloured background.’ where MATERIAL being different fluid materials.

material given object description. For example, B-2 Bomber, Rocky Among such videos, we categorise them into (1) pure fluid videos
Mountain, Fountain made of jade and etc. In Figures 1, 6-8 and 9, where only a single fluid type appeared; (2) solid and fluid interac-
we show some examples of our generation. In Figures 5,10-12, we tion videos where static and dynamic solids are involved in the sim-
show some examples of our qualitive comparisons. We refer readers ulation; (3) fluid mixture videos where different fluid types appear in
to our Supporting Information for more results for our generation. the same video and create a mixture through the generation pipeline.
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Figure 9: We show our method is capable of composing underwater bubbles similar to the result of simulated two-phase flow as shown in
[LD23]. The grey coloured picture is the shaded result where none of the underwater effect can be observed initially.

VACE-scribble Ours

Target WAN-2.1

VACE-depth

Figure 10: Text prompt: ‘Water jet on a human face covered by
dirty mud creating splashes and turbulant fluid motion. The video
should have a single colored background.” We see only our method
faithfully recovers the target video while aligned with the textual
description where mud is coving face.

6.1. Human Evaluations

We anonymously collected 70 responses from participants on ran-
domly 24 videos from our 176 generated ones. Each of our videos
is paired with VACE and WAN 2.1 videos, with the shaded video
labelled as ‘Target’ and other video labelled as Method A to D. We
show our study result in Figure 13. We refer readers to Supporting
Information for examples of our setup.

6.2. Machine Metrics

To assess control alignment, we first apply classical vision
metrics—comparing each method directly against the provided
target video. Following [CJL*25], we then combine quantitative
VBench scores [HHY*24] with GPT-40-based ratings. VBench
measures motion smoothness, aesthetic quality, imaging quality,
overall consistency, and temporal flicker, while GPT-40 evaluates
physical realism, visual quality, semantic consistency, and align-
ment with the target video. The evaluation prompt we use for GPT
evaluation are provided in the Supporting Information.

6.3. Result Observations

We discuss the result based the result of our evaluation shown in
Tables 1-3 and Figure 13.

Target WAN-2.1 P i Ours

Figure 11: Text Prompt: ‘An Armadillo made of dark brown
coloured hot chocolate drop into a squared tank of dark caramel
coloured coke cola. The two materials blend together.” Our method
is capable of accurately capture the initial material separation be-
tween cola and chocolate and their mixture in later frames while
other methods fails to achieve such result.

Controllability. As reported in Table 1, our method produces
videos that are structurally the most faithful to the provided con-
trol signals across all categories. GPT-based evaluations (Table 3)
further confirm that it achieves the highest alignment with both the
textual prompts and the target video. By contrast, approaches rely-
ing solely on text control exhibit the poorest correspondence. These
findings underscore the necessity of integrating simulation-based
guidance into diffusion pipelines to satisfy the precision require-
ments of graphics workflows, since text alone is too sparse and am-
biguous for fine-grained control.

Visual Quality. In addition to controllability, our goal is a fast ren-
dering pipeline for fluid simulations. Our results show that the pro-
posed framework strikes an effective balance between fidelity to
the control input and overall aesthetic appeal. And to the best of
our knowledge, we believe current ray tracing with fluid simulation
techniques cannot give a comparable quality result in all scenarios
that we showed in this literature given the same computational time
and resource limit.

Physical Realism. Our method achieves the highest motion qual-
ity and temporal consistency under the VBench metrics, while
matching VACE in both overall consistency and aesthetic quality.
As expected, WAN-2.1 leads on physical realism: our focus is on
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Table 1: We perform classical vision validations comparing different methods with the target video (shaded simulation video).
Total score Pure fluids Solid—fluid interactions Fluid—fluid mixtures

Models PSNRT  LPIPSt  sSIM"  PSNR'  LPIPS}  SSIM"  PSNR'  LPIPS*  SSIM'  PSNR'  LPIPSY  SSIM'
WAN-2.1 8.867 0.752 0.455 8.631 0.709 0.468 8.961 0.767 0.442 8.544 0.703 0.512
VACE-depth 8.052 0.655 0.511 7.401 0.577 0.560 8.257 0.680 0.489 7.466 0.586 0.589
VACE-scribble 9.053 0.583 0.531 9.441 0.566 0.665 9.152 0.584 0.500 8.182 0.591 0.594
Ours 13.429 0.411 0.691 13.679 0.320 0.741 13.464 0.432 0.674 13.033 0.370 0.742

Note: We see our method gives the best score across all scenarios.

Table 2: We selected five categories from VBench [HHY*24] scores that’s most related to the subject that we are studying, namely motion smoothness (MS),
Aesthetic Quality (AQ), Imaging Quality (1Q), Overall Consistency (OC) and Temporal Flickering (TF).

Total score Pure fluids Solid—fluid interactions Fluid—fluid mixtures
Models MST AQT 1QT oc' TF' Ms' AQ' IQT oc? TF' MS' AQ'T 1Q"T oc' TF' Ms' AQ' 1Qt oc!' TF!
WAN-2.1 0.988 0.554 0.612 0.231 0.980 0.987 0.556 0.574 0.198 0.981 0.987 0.565 0.623 0.242 0.979 0.992 0.488 0.584 0.200 0.987
VACE-depth ~ 0.990 0.515 0.630 0.221 0.984 0.994 0.491 0.551 0.169 0.992 0.989 0.531 0.650 0.237 0.981 0.994 0.451 0.584 0.169 0.992

VACE-scribble 0.992 0.461 0.590 0.202 0.989 0.995 0.418 0.564 0.165 0.993 0.992 0.477 0.606 0.215 0.987 0.994 0.409 0.529 0.163 0.993

Ours

0.992 0.480 0.648 0.221 0.989 0.994 0.447 0.620 0.168 0.994 0.992 0.500 0.660 0.237 0.988 0.994 0.395 0.607 0.180 0.993

Note: We show our method reaches the best temporal, motion and quality scores in all cases and generally performs better comparing to VACE.

Table 3: Following [CIL*25], we use GPT-4o to evaluate the following metrics based on 10 evenly sampled frames.

Total score Pure fluids

Solid—Fluid Interactions Fluid—Fluid Mixtures

Models Phys? Vis" T-Align" V-Align® Phys" Vis" T-Align® V-Align®? Phys? Vis? T-Align? V-Align® Phys" Vis" T-Align" V-Align®
WAN-2.1 0.793 0.798 0.671  0.551 0.775 0.822 0.750  0.630  0.794 0.793 0.655  0.529  0.805 0.806 0.694  0.603
VACE-depth  0.706 0.725 0.666  0.710 ~ 0.793 0.782 0.801  0.796  0.682 0.708 0.638  0.682  0.765 0.772 0.712  0.789
VACE-scribble 0.665 0.704 0.640  0.682  0.762 0.776 0.802  0.780  0.635 0.682 0.603  0.652  0.747 0.765 0.708  0.765
Ours 0.740 0.773 0.743  0.737  0.807 0.804 0.858  0.823  0.724 0.763 0.719  0.718  0.769 0.800 0.773  0.767

Note: The criteria are physical realism (Phys), Visual Quality (Vis), Semantic Consistency (T-Align) and Target Video Consistency (V-Align).

giving artists fine-grained control over fluid effects, not on max-
imising scene accuracy. For example, in the human-face scenario
(Figure 10), WAN-2.1 naturally produces head tracking and eye-
blinking in response to water jets, whereas our output leaves the
face static. Crucially, however, our framework fully supports mov-
ing solid boundaries—so artists can easily introduce exactly those
motions to achieve any desired effect. By contrast, WAN-2.1’s head
movements, while seemingly more ‘physical,” cannot be modified
or controlled by the user.

6.4. Comparison with Traditional Rendering

In addition to video generation models, we also compare our method
against results from a traditional rendering pipeline (Houdini).
Our comparison includes three representative materials—water, milk
chocolate, and milk (see Figure 14). Other materials such as beer,
cola, or white-water effects depend heavily on the underlying simu-
lation method and cannot be achieved with single-phase FLIP sim-

ulation, which was one of the key motivations for our work, and are
therefore not included in the comparison.

6.5. Ablation and Parameter Study

In this section, we study the necessity of depth-+scribble control, the
transparency blending for tinted colouring, the mixture rate y and
the necessity of mixture mask in the fluid material blending

Dual Control. InFigure 15, we show the influence of different por-
tions of depth control over scribble control applied. We believe the
choice of 20% gives the reasonable result between quality and de-
tails. In that figure, the first row studies if we apply depth control
first and how the portion of scribble will influence the result with
the intuition that depth control gives more smooth signals and will
be more suitable for early-stage denoising, which focuses on colour-
ing generation instead of motion and details [SHWC25]. The sec-
ond row shows other different schemes applying the controls. We
see if applying scribble control in the early stage, even for just 10%,
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Figure 12: Text Prompt: ‘White milk poured down into a tilted wine
glass.” We show that Wan 2.1 cannot achieve precise control only
from textual input while VACE suffers from letting fluid material
influence solid and background generation, causing over-exposure.
The transparency is already applied to shaded video and is used as
a control for VACE.

Scores from User Studies
Physics Realism
—e— VACE-depth
5 —e— VACE-scribble
WAN 2.1
—e— 0urs

Semantic

Consistenc isual Quality

Target Video Consistency

Figure 13: In this figure, we show the result of our user studies.
The result indicates that our method gives the best alignment and
controllability with minimal sacrifice of visual qualities.

will cause a noisy result, which is aligned with the observation in
[SHWC25] and the intuition. Other schemes, like cyclic or random
does not improves the simple binary split scheme shown in the first
row and, therefore, is not used.

Transparency Blending. In Figure 16, we show that without us-
ing the transparency blending but only use the transparent shaded
video, VACE pipeline either only gives solid or fluid material. With
blending, more realistic effects of plane wings covered by fluid can
be observed.

D. Chen et al. / Fluid Composer: Fluid Detail Composition and Rendering Using Video Diffusion Models

Mixture Rate. We study the control over speed of mixture between
two fluids in Figure 17 with y € {1.0,4.0,8.0} and t, =5 or y =
1.0 and ¢t € {5, 12, 17}.

Mixture Mask. We show in Figure 18 that without a mixture mask,
due to our fluid mixture mechanism of latent space blending be-
tween mixture material and separate materials, the result naturally
changes the colouring of the area for fluids where mixtures should
not be influencing.

7. Discussion

In this section, we first discuss the relationship between our method
and some concurrent works in this area. Following this, we discuss
the usage of material masks and mixture masks. Finally, we will dis-
cuss the relationship between our method and image-to-video mod-
els.

7.1. Relation to Concurrent Works

Here, we first discuss the relation between our method, WonderPlay
[LYL*25], FluidNexus [GYZW25], and PhysGen3D [CJL*25].
Then, we show qualitive comparison between our method and diffu-
sion as Shader (DaS) [GYL*25], followed by discussion on the re-
sults.

FluidNexus [GYZW?25] focuses on reconstructing a 3D smoke
plume from a single image and animating it using position-based dy-
namics (PBD). While effective for turning static images into multi-
view sequences, their method does not support controllable effects
such as colour changes, smoke material switching. While for Won-
derPlay [LYL*25], on the other hand, is conceptually closer to Phys-
Gen3D [CJL*25], where the primary task is to manipulate an object
given a picture and external force guidance. Their pipeline similarly
relies on 3D reconstruction combined with in-the-loop PBD/MPM
simulations at coarse resolution. Both methods are not designed for
adding special effects for shaded fluid videos and did not fully utilise
the capacity of video diffusion models.

Comparing with DaS [GYL*25], its problem formulation dif-
fers fundamentally from ours. Da$ targets image manipulation un-
der motion guidance, using an image-diffusion model (FLUX) with
temporal consistency enforced through a tracking video. Their accu-
racy is tightly coupled to the quality of this tracking video, estimated
via optical flow or mesh-based keypoint tracking, both of which fail
under severe occlusions or topology changes where such conditions
are common in fluids. In contrast, our method builds on a video-
diffusion model, where physical plausibility is grounded in simula-
tion results and dual-control signals from shaded videos. Temporal
consistency arises directly from the video-diffusion backbone, and
controls are enforced more strictly. We compare our method in a
qualitative way with result from DaS as shown in Figure 19

7.2. Material Mask and Mixture Mask

In Section 6.5, we demonstrated the crucial role of masks in both
material separation and fluid mixture. However, we acknowledge
that masking can also introduce artifacts, particularly when solids
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Ours

» ‘

Milk Milk Chocolate Water

Figure 14: Comparison with rendered fluid material. We show our method gives comparable quality for materials can be easily ray traced.

-

10% Scribble +_gg= Cyclic every 20% Depth + 20% Depth + 20% Depth +
90% Depth 2steps Cyclic every Cyclic every Random
i 2 steps 4 4 steps

0% Depth + 20% Depth + 50% Depth
100% Scribble: 80% Scribble
K 2

Figure 15: We study the portion and method of depth versus scribble in the dual control process. The naming convention is that the control
applied first will be in front of the ‘4’ sign and the control applied after is behind it. In the first row, we study the portion of depth being
injected in the pipeline with following the intuition that smooth signal should help colour generation in early steps. In the second row, we
study other alternatives without following the intuition. ‘Cyclic’ means alternate control signal between depth and scribble and always start
with the depth signal first. ‘Random’ means randomly select control signal uniformly. As justified by the first row of this figure, our choice of
20% gives the most satisfying result as what’s reasoned from the observation in [SHWC2S5]. In the second row, we see cyclic schedules only
work if depth is applied first and do not actually make much difference in two-steps cases and will cause problems if more depth is injected.

With Blending

--

Figure 16: In the first row, without our transparency blending, the
B-2 is either completely obscured by the fluid or not covered at all,
both of which are unrealistic. In the second row, with transparency
blending enabled, partial fluid retention on the solid surface is faith-
fully captured.

and fluids are tightly interwoven or when fluids form thin structures
such as condensation on glass, liquid-coated brushes, or hair. In
these cases, fine features may not be preserved with the same fidelity
as in the underlying simulation. Meanwhile, though our method is
capable of generating results shown in this paper, our mask genera-
tion method is purely based on a basic fluid simulation without con-
sidering any physical mixture models and only aims for providing
visual effects of mixture. In cases where the mask being timely jit-
tering or have significant occlusion, that is, the other material being
very tiny or is totallly invisible from the view camera, our method
will not be able to give good result. We believe it remains a good

Figure 17: We show the speed of mixture is controlled by y and
t,. In the first row, t, is fixed with y increasing from left to right,
meaning the increasing of mixing speed. In the second row, y is
fixed and t; increasing from left to right, meaning the increasing of
mixture starting time.

direction for future work to study for explicitly modelling mixtures
of multiple fluids.

7.3. Image-to-Video Models

Finally, we conclude this section by briefly discussing the relation-
ship between our method and image-to-video models. Our approach
naturally fits within the image-to-video setting, with the additional
requirement that the initial image is generated under explicit con-
trol signals. Since modern video diffusion models are temporal ex-
tensions of image generators, frameworks such as VACE inherently
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With Mask
Frame 54

Figure 18: We justify the necessity of the blending mask. We see
without the blending mask, two fluid unaturally changes to the mixed
colour in the later stage of video generation steps, while the masked
version does not.

support image-to-video generation, and our method can be directly
applied in this context. However, without control videos, purely
image-driven image-to-video models have limited controllability
over future frames. This motivates the use of control videos even
in the image-to-video regime, a design choice that is also reflected
in the DoS pipeline [GYL*25].

8. Limitation and Future Work

We identify the following limitations of our method and possible
future works from mainly four perspectives.

First, language guidance on material can sometimes cause in-
accuracy and give non-desired result. In such cases, a style refer-
enced picture guiding the material edition will be desirable. How-
ever, going such direction requires fine-tuning on existing models,
which can be hard to achieve since both simulating/rendering realis-
tic beer/coke still remains a time-consuming and difficult task espe-
cially considering the size of data required for fine-tuning a diffusion
model. Despite this, one possible solution will be to manipulate the
attention map within the DiT blocks as previously explored under
stable diffusion models for video, as shown in [SLZ*24].

Second, our method applies control in a enforced way that though
giving full control to artists for graphics pipline, did not take full ad-
vantage of general knowledge that’s learnt from trillions of data em-
bedded in the large model of DiTs. A weak guidance that remaining
highly controllable would be more desirable.

Target
DaS (Tracking)

DaS (Motion)

Ours

An Armadillo made of dark caramel colored coke cola drop
into a squared tank of coke cola, creating bubbles on the

‘Water jet on iron built axe creating splashes and turbulent
fluid motion. The video should have a single colored
surface. The video should have a single colored background background

Third, the limitation of our method comes from the ability of the
backbone we are using, that is, the WAN-2.1 model both in terms of
the length and the quality of the video. Future development in such
model will directly improve the result of this work.

Finally, for future works, our current method has only been tested
on free-surface fluid simulation where fluid usually can be repre-
sented by a surface mesh representing clear fluid surface. For other
fluid types, including volumetric fluid like smoke and fire, more fine
grind fluid like sands and snow or elastofluid like jelly or creams,
we have not tested our method on such domain. One can definitely
substitute the naive Phong shader with an OpenGL implementation
of a simple volumetric data shader or other data types and still get
real-time performance in such a situation. Hence, possible future di-
rection includes extending current work to a full pipeline supporting
all fluid phenomenons.

9. Conclusion

In conclusion, we have introduced a training-free framework that
seamlessly combines classical fluid simulation, real-time shading,
and controllable video diffusion to produce rich, photorealistic fluid
effects. By leveraging a base incompressible simulator for pre-
cise layout and physics priors, and converting its output into a
lightweight control video. We preserve full artist control without the
implementation overhead of specialised fluid solvers. A language-
guided diffusion model then enriches this control signal, adding
foam, bubbles, mixtures, multi-material blending, and transparency
via mask-based separation and blending in latent space.

Our experiments demonstrate that this hybrid pipeline achieves
high visual fidelity across challenging scenarios (fluid mixtures,
splashes, complex material interactions) while avoiding costly ray-
tracing or difficult solver development. By building on off-the-shelf
video-generation backbones with no additional training, this repre-
sents, to our knowledge, the first accessible, controllable, and physi-
cally grounded approach to fluid synthesis for graphics applications.
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A stone textured board sliding in a tank of dark red wine.
The video should have a single colored background

Golden lager beer poured down into a tilted wine glass. The
video should have a single colored background.

Figure 19: We show a qualitative comparison between our method and Diffusion as Shader (DaS). Here, we compare against tracking video
generated from Blender (Das (Tracking)) or from using motion transfer (Das (Motion)).
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