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We propose a neural particle level set (Neural PLS) method to accommodate
tracking and evolving dynamic neural representations. At the heart of our
approach is a set of oriented particles serving dual roles of interface trackers
and sampling seeders. These dynamic particles are used to evolve the inter-
face and construct neural representations on a multi-resolution grid-hash
structure to hybridize coarse sparse distance fields and multi-scale feature
encoding. Based on these parallel implementations and neural-network-
friendly architectures, our neural particle level set method combines the
computational merits on both ends of the traditional particle level sets and
the modern implicit neural representations, in terms of feature representa-
tion and dynamic tracking. We demonstrate the efficacy of our approach by
showcasing its performance surpassing traditional level-set methods in both
benchmark tests and physical simulations.
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1 INTRODUCTION

Dynamic interface tracking has been a critical research problem
in many visual and scientific computing applications. Examples
include tracking complex fluid surfaces, generating structural de-
signs, and segmenting medical images, just to name a few. Level
set methods serve as a fundamental tool in accommodating these
applications. Since its inception in [Osher and Sethian 1988], level
sets have proven to be highly effective in tackling dynamic inter-
faces exhibiting complex geometrical and topological characteristics.
The key concept behind a level set representation is to describe a
codimension-k interface using a signed distance field (SDF) defined
in a codimension-(k-1) space. In a typical interface tracking sce-
nario, this SDF information is discretized on a Cartesian grid and
evolved with its background velocity by adhering to the distance
field constraints. Traditional level set methods manifest two aspects
of limitation.

First, enhancing the geometry resolution of a level set is expensive.
On a grid discretization, the highest level of details that a level set
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Fig. 1. We introduce a novel neural-discrete hybrid method for dynamic
interface tracking that combines Instant-NGP with a sparse grid (the top-
right inset picture). By utilizing this approach, we are able to accurately
track and preserve surface details even in the presence of high-distortion
velocity fields (the top-left inset picture). To showcase the effectiveness of
our method, we demonstrate its performance in fluid simulation scenar-
ios. Specifically, we employ an incompressible fluid solver operating on a
256° velocity field and illustrate the successful recovery of fine fluid struc-
tures represented by our level set representation (the bottom inset picture).
Through the integration of Instant-NGP with a sparse grid, our method
offers a robust and efficient solution for dynamic interface tracking, making
it applicable to various fluid simulation applications and related domains.

model can capture is restricted by the size of its grid cell. Naively
refining the cell size of a uniform grid to refine the level set will
drastically boost the computational cost. Second, feature preserva-
tion when tracking a dynamic interface is challenging. Grid-based
advection and reinitialization cause feature smear-out during an
SDF’s temporal evolution. Maintaining auxiliary structures near
the interface, e.g., the particle level set (PLS) method [Enright et al.
2002], comes with extra implementation complexities and nontrivial
computational expenses.

The recent advances in implicit neural representations (INR) in
visual computing communities (see [Xie et al. 2022] for a compre-
hensive survey) open up a new door for characterizing complicated
implicit geometry. The core idea of a neural representation is to use
a neural network to encode a geometry’s implicit signed distance
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function. Specifically, the neural network takes a position vector
(x,y,2) as input and produces a scalar ¢ for its SDF value. The
neural network is trained by taking sufficient point samples with
correct ¢ values sampled around the interface. The most salient
advantage of a neural SDF representation is its decoupling of spatial
discretization and representative resolution. By encoding a level set
function in a network directly, an implicit neural representation
can characterize shapes with a (theoretically) infinite resolution by
nature, without resorting to complex adaptive structures such as
octree or sparse grids (e.g., see recent progress in [Martel et al. 2021;
Sitzmann et al. 2020; Takikawa et al. 2021; Tancik et al. 2020]).

Despite the inspiring progress made in static geometry represen-
tation, tracking highly dynamic interfaces with an implicit neural
representation remains challenging. On one side, it is difficult to ad-
vect an implicit neural field without an explicit spatial discretization.
Traditional advection schemes such as semi-Lagrangian [Stam 1999]
and BFECC [Dupont and Liu 2003] rely on a grid structure to traverse
the space and update the SDF values around the moving interface.
Such discretization is unavailable for a neural representation. On the
other side, preserving interface features during the spatiotemporal
evolution of a level set is difficult. Directly transporting the level
set’s implicit field with an advection loss term [Chen et al. 2022]
ignores its SDF nature and is therefore inefficient in keeping its
geometric features. Moreover, updating the network structures and
parameters every time when the interface moves is expensive. It
is costly to generate new sample points, update network weights,
and enforce the distance constraints within a plausible period of
time. These difficulties jointly render the neural representations less
attractive in tackling dynamic interface problems when compared
with their grid-based cousins and restrict their applications mostly
within the scope of tackling static geometries.

To tackle these challenges, we propose a neural particle level set
method to enable highly dynamic interface tracking for implicit
neural representations. The key idea of our approach is inspired by
the renowned particle level set method (PLS) [Enright et al. 2002],
in which a group of marker particles are tracked around the moving
interface to enhance its feature preservation on the background grid.
Motivated by the role particles play in PLS, we maintain a set of
oriented particles carrying normal information on the interface to
simultaneously facilitate dynamic tracking and network training of
a moving neural interface. These oriented particles play a dual role
in our representation, both as particle trackers to characterize local
geometric features and as training samplers to seed training samples,
which jointly capture the complicated geometric and topological
features during the evolution of a neural interface. On the neural
representation side, we devised a multi-resolution hash structure
to encode neural distance values near the interface, augmented by
a sparse grid structure to maintain distance information far from
the interface on a coarse level aiming at reducing the training cost.
Regarding implementation, our method can seamlessly integrate
the Taichi sparse structures [Hu et al. 2019] and the Instant Neu-
ral Graphics Primitives (I-NGP) framework [Miiller et al. 2022] to
leverage their optimal memory access and rapid network training
capabilities on GPU.

Our neural particle level set (Neural PLS) combines the com-
putational merits of both traditional particle level sets (PLS) and
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modern implicit neural representations. On one hand, our method
fully inherits the capability to track and preserve thin and sharp
features, thanks to the Lagrangian nature of our particle trackers.
On the other hand, our framework extends the adaptive expres-
siveness of neural representations to characterize dynamic implicit
surface evolution, without requiring complex adaptivity mecha-
nisms. We demonstrated the capabilities of our method in terms
of high-resolution tracking and feature preservation by compar-
ing it against traditional PLS methods in various benchmark tests
and physics simulation scenarios. To the best of our knowledge,
our method has proven, for the first time, that a neural represen-
tation can rival the traditional level set method in terms of both
representation accuracy and dynamic tracking capability.

We summarize the main contributions of our method as follows:

o A novel hybrid neural-discrete data structure based on multi-
resolution hash encoding and sparse grids to represent dy-
namic level set functions with adaptivity

o An efficient oriented particle representation that decouples
interface location and orientation representation to facilitate
fast network training

o A unified neural particle level set framework to accommodate
large-scale dynamic interface tracking applications

2 RELATED WORK

Level set methods [Osher and Fedkiw 2005; Osher and Sethian 1988]
address the spatiotemporal evolution of an implicit function. This
approach can be computationally expensive due to the need to store
abundant spatial samples near the interface and to reinitialize the
distance field. Researchers have put forward a multitude of works
for acceleration, which can be grouped into three main categories
exploring adaptive and sparse grids, particle methods, and high-order
augmentations. The recent trends on implicit neural representations
and their dynamic representations add a new dimension to the prob-
lem. We will survey these works as below.

Adaptive and sparse grids. Adaptive signed distance field represen-
tations were introduced to graphics in [Frisken et al. 2000], which
has later been extended by a plethora of novel data structures such as
Octree [Losasso et al. 2004], sparse grids [Museth 2013; Setaluri et al.
2014], hybrid height fields [Chentanez and Miller 2011; Irving et al.
2006], Power diagram [Aanjaneya et al. 2017], hybrid grid-particle
structures [Gao et al. 2017], and the very recent implicit neural
representations [Kim et al. 2022; Miller et al. 2022], to name just
a few examples. These data representations have been adapted to
accommodate high-resolution interface tracking applications (e.g.,
fluid simulation) characterized by very detailed interfacial geome-
try and dynamics (e.g., [Bojsen-Hansen and Wojtan 2013; Goldade
et al. 2016]). However, traditional adaptive data structures usually
suffer from their implementation complexities and parallelization
difficulties.

Particle methods. Pioneered by the Particle Level Set (PLS) method
[Enright et al. 2002], adding particles to enhance the numerical accu-
racy of interface tracking has been one of the common practices in
both computer graphics and computational physics. Various kinds



Fig. 2. A sphere is evolved in a 3D deformation field for a long duration to
obtain extremely thin films using our neural PLS method. Similar results
have been previously obtained using a supercomputer in [Gibou et al. 2018],
and we have achieved comparable results using a workstation equipped
with a single Nvidia Quadro RTX8000 GPU.

of PLS extensions have been investigated, exemplified by the single-
layer particle level set [[anniello and Di Mascio 2010; Vartdal and
Bockmann 2013], pure Lagrangian method [Hieber and Koumout-
sakos 2005], and hybrid grid-particle structures [Ferstl et al. 2016;
Leung et al. 2011; Leung and Zhao 2009a,b; Sato et al. 2018; Zhao
et al. 2018]. The one that is most relevant to our approach is the
self-adaptive oriented particles level set method (AOPLS) [Ianniello
and Di Mascio 2010], in which oriented particles were adopted to ac-
commodate accurate interface tracking. In computer graphics, pure
Lagrangian representations, such as Moving Least-Squares (MLS)
particles [Wang et al. 2020], Smoothed Particle Hydrodynamics
(SPH) surface [Wang et al. 2021], and Moving Eulerian-Lagrangian
Particle Method (MELP) [Deng et al. 2022], have been explored to
track interface without evolving a distance field, reminiscent of the
traditional Lagrangian front-tracking methods [Brochu and Bridson
2009; Da et al. 2014; Wojtan et al. 2011] in fluid simulation.

High-order representations. Besides discrete particles, researchers
also leverage extra geometric fields or high-order polynomials to
enhance the interface representation. Gradient fields are one of
these common choices (e.g., see [Backmann and Vartdal 2014; Nave
et al. 2010]). These approaches evolve gradient fields of the level set
to compensate for the advection error. Similar concepts have been
recently introduced to computer vision by Sommer et al. [2022],
which combines implicit voxel-based SDFs and explicit gradient
information to improve the accuracy of surface normal estimation.
High-order polynomials (e.g., Hermite interpolation in [Nave et al.
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2010]) are typically used within these gradient-augmented schemes
to enhance the local subcell geometric representation. Examples of
using these polynomials include [Saye 2014] and [Heo and Ko 2010],
which employed high-order polynomials to feature distance fields
in local grid cells. Recently, polynomial methods have also been
explored to enforce divergence-free subcell velocity field [Chang
et al. 2022; Schroeder et al. 2022]. Our method was inspired by
these high-order methods (in particular [Saye 2014]) to maintain a
continuous representation (in our case lightweight neural network)
to enhance local geometric features.

Implicit Neural Representation. Neural implicit representations,
pioneered by a series of neural signed distance function (SDF) works
[Chen and Zhang 2019; Mescheder et al. 2019; Park et al. 2019], lever-
age neural networks to represent implicit shapes through regression
over directly sampled points. In recent years, there has been a pro-
liferation of research projects exploring the diverse applications of
neural representations in visual computing [Chen et al. 2022; Hertz
et al. 2021; Park et al. 2021; Sitzmann et al. 2020; Tancik et al. 2020]
(for a survey, see [Xie et al. 2022]). One important focus in this area
has been on accelerating algorithms through sparsity, adaptivity,
and signal encoding. Notably, several recent works [Chabra et al.
2020; Jiang et al. 2020; Miiller et al. 2022; Peng et al. 2020; Takikawa
et al. 2021] have made significant contributions in this direction. Of
particular relevance is the work by Miiller et al. [2022], which intro-
duced a multi-resolution spatial hashing encoding and a lightweight
neural network to represent complex fields. The recent proposition
of adopting particle structures to enhance scene encoding and train-
ing is noteworthy. The concept of Gaussian Splatting was initially
integrated into implicit representation in the work of Kerbl et al.
[2023], demonstrating that oriented information from 3D Gaussians
could be directly employed to encode high-fidelity scenes. This ap-
proach has been further developed for dynamic settings by Luiten
et al. [2023]. Additionally, the combination of particles with Radial
Basis Functions (RBF) has been proven to aid in the convergence
and accuracy of I-NGP, as shown in [Chen et al. 2023].

Building upon these approaches, we propose our neural parti-
cle level set method, which incorporates particles to address the
challenges associated with complex interface tracking.

Dynamic neural representation. While significant progress has
been made in static representations using neural networks, there
has been a relatively scarce exploration of dynamic tracking. Some
pioneering research in this area includes the work by Atzmon et al.
[2019], which uses samples attached to model parameters for level
set deformation, and the recent paper by Novello et al. [2022], which
proposes learning implicit surface movements over a continuous
interval of time using a single network. Recently, Chen et al. [2022]
proposed a generic framework to evolve implicit fields by incorpo-
rating PDE losses in network training, which share similar ideas to
[Chu et al. 2022]. Among these efforts, we highlight an inspiring
recent work by Mehta et al. [2022], which allows applying defor-
mation operations onto a neural implicit surface. They leveraged
a Marching Cubes algorithm to generate an explicit surface mesh,
enabling the use of differential operators that drive the interface
evolution, and demonstrated applications in differentiable geometry
processing and rendering. However, this approach has limitations
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Fig. 3. Our representation consists of three parts: a group of oriented parti-
cles, a multi-resolution neural representation, and a sparse grid.

when dealing with challenging scenarios involving highly distorted
interfaces, substantial advection, or frequent topological transitions,
which are the focus areas of our proposed method.

3 NEURAL LEVEL SET REPRESENTATION

Problem description. We aim to devise a data structure by hybridiz-
ing particles, a sparse grid, and an implicit neural representation to
describe a narrow-band, high-resolution signed distance field. Given
a query position x, the data structure returns the accurate signed
distance value @(x) if x is within the narrow band specified by
distance € around the zero level set; and it returns +€ or —e with the
correct sign to distinguish the positive/negative side if x is outside
the narrow band.

Data structure overview. As shown in Figure 3, our data structure
comprises three main components: a set of oriented particles on the
tracked interface, a multi-resolution hash structure implemented
with I-NGP [Miiller et al. 2022], and a sparse grid structure for
far-field information. These components work together to support
distance query operations (discussed in this section) and dynamic
tracking of an evolving interface (covered in Section 4). The oriented
particles serve as both dynamic interface trackers and training sam-
ple seeders. The multi-resolution hash structure efficiently encodes
fine distance values, while the sparse grid structure maintains infor-
mation on a coarser level, extending further from the interface. By
combining these three components, we achieve effective distance
queries and enable accurate tracking of the evolving interface.

3.1 Oriented Particles

Our approach involves the maintenance of a group of particles pre-
cisely located on the interface. Each particle stores its position and
the corresponding normal vector.These oriented particles play two
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Fig. 4. Detailed illustration of I-NGP structure which consists of three parts:
a multi-resolution hash table lookup, a linear interpolation of feature vectors,
and an MLP decoder.

important roles in our method: dynamic interface trackers and net-
work training seeders. As dynamic interface trackers, these particles
move in accordance with the background velocities, ensuring ac-
curate tracking of the interface’s position as it evolves over time.
Simultaneously, these particles, along with their updated normals,
serve as key seeding inputs for network training, enabling the gen-
eration of an implicit level set representation (see Section 3.4). By
effectively combining the functionalities of dynamic interface track-
ing and network training, our method leverages the information
carried by these oriented particles to achieve an accurate and adap-
tive implicit level set representation.

Unlike the traditional level set method [Enright et al. 2002], which
maintains a narrow band of marker particles on both sides of the in-
terface, our method employs a single layer of particles, augmented
by their normals, to track the interface’s evolution. This design
choice is motivated by a fundamental principle in level set theory
— the Lagrangian nature of a material interface. According to this
principle, all material points initially located on the interface will
remain on the same interface throughout its evolution, expressed
mathematically as DX /Dt = 0, where X denotes the position of a
material point on the interface. Leveraging this Lagrangian prop-
erty, we utilize these material particles as markers that continuously
move with the interface. These markers will further serve as seeders
to generate points near the interface with different distance val-
ues to accommodate network training, which effectively facilitates
network training and seamlessly integrates with our neural rep-
resentation. It is important to note that the idea of using a single
layer of oriented particles to improve the traditional PLS method
originates from the work of [lanniello and Di Mascio 2010] in com-
putational physics. Subsequent research [Vartdal and Beckmann
2013; Zhao et al. 2018] has further extended this idea to improve its
numerical robustness and geometric expressiveness. Our approach
follows this thread of work. In contrast to previous methods (e.g.,
Tanniello et al. [Ianniello and Di Mascio 2010]), which often relied on
local polynomial fitting or particle correction for updating level set
values, our approach utilizes oriented particles as sample seeders to
establish a connection between discrete trackers and the continuous
functions of our hybrid representation.

3.2 Multi-resolution Neural Representation

To describe the level set function based on oriented particles, we
adopt an implicit multi-resolution neural representation inspired
by the I-NGP method proposed by Miiller et al. [2022]. This neural



representation employs a multi-resolution architecture that allows
for sparse and adaptive feature encoding. It operates by taking
sampling points primarily seeded by the oriented particles and
training an implicit Signed Distance Function (SDF).

Network architecture. Following Miiller et al. [2022], our network
architecture consists of a multi-resolution spatial hash-table encoder
and a Multi-Layer Perceptron (MLP) decoder. As illustrated in Fig-
ure 4, the multi-resolution structure consists of L levels of spatial
hashing tables to store the multi-resolution features of the target
field in a local and sparse manner. On each level, the spatial hashing
entries are hashed voxel node coordinates, and their values are the
encoded feature vectors. For a given point x, it first finds each of the
8 (for 3D) or 4 (for 2D) node coordinates and then converts them to
a hash-table entry. The feature vector for point x on a specific level
is then acquired through a linear interpolation of feature vectors
of the voxel nodes. Feature vectors on different levels are concate-
nated together and passed to the MLP to obtain the predicted signed
distance value.

3.3 Sparse Grid

To complement the neural representation and augment distance
queries that are far from the interface (namely, for query points x
with |¢(x)| > €), we maintain a two-layer sparse grid structure in
the background. The purpose of this grid is to store the correct side
information (i.e., interior or exterior) for regions that are not within
the narrow band of the neural representation. In particular, for a
point that is outside the narrow band, indicating that our neural
representation cannot predict an accurate distance value, the sparse
grid should replace the network prediction by —e¢ if it is inside the
domain and +e¢ if it is outside. We implement this feature with our
two-layer sparse grid. The code infrastructure for sparse memory
access is based on the Taichi Programming Language [Hu et al.
2019]. Next, we will briefly describe the grid structure’s high-level
design and how it complements the SDF query for I-NGP for points
that are far from the interface.

Grid structure. Our grid structure consists of two levels—a coarse
level and a fine level. We maintain a uniform grid on the coarse
level. Each cell on this layer is marked by one of the three tags:
interface, exterior, and interior. A cell is marked as an interface cell
if it contains at least one oriented particle. Otherwise, it will be
marked exterior if it is outside the level set domain and interior if it
is inside. An interface cell on the coarse level will be further divided
into 83 fine cells. For each fine cell, if it is within the narrow band
of the interface, it is marked as interface; otherwise, it is marked as
exterior or interior according to whether it is outside the level set
domain or not.

SDF query. For a query point x, we first check its tag on the coarse
level: if the point is in an exterior/interior coarse cell, we directly
return (+)e as its SDF value. Otherwise, we further check the point’s
tag on the fine level: if it is in an exterior/interior fine cell, we directly
return (+)e; otherwise, we return ¢(x) by querying from I-NGP.

Storage. We store (1) an SDF value as a floating-point number
within [—e¢, +€]), and (2) a bitmask as a Taichi built-in variable [Hu
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etal. 2019], which is used to mark if a cell’s type is interface. Based on
these two fields, we implement the following mechanism to judge a
cell’s type: A cell is an interface cell if its bit mask is true; it is judged
as an exterior/interior cell if its bit mask is false and the sign of its SDF
value is +/—. We note that the motivation of directly storing a sparse
SDF field on the sparse grid is particularly beneficial for dynamic
tracking, in which case the SDF values (at least their signs) need to
be updated according to the background velocity, which is beyond
the capability of the narrow-band neural representation. In this
sense, storing a floating-point number can seamlessly accommodate
existing advection schemes essential for dynamic interface updates.
The stored SDF values will be corrected using the trained I-NGP
module to guarantee consistency. Because of the sparse nature of
the grid structure and its notably low resolutions (in our examples,
we used 32° for the coarse grid and 2563 for the sparse one), the
memory consumption of the grid is negligible when compared with
the neural-network counterpart.

3.4 Data sampling and network training

Sampling strategy. For each training iteration, our training point
samples are composed of three parts: (1) randomly selected oriented
particles, (2) sample points obtained from selected oriented particles,
and (3) sample points randomly generated in the fined cells as shown
in Figure 6. The sampling proportion between the three types of
samples is 48%:48%:4%. For Part (1), we randomly select 10% total
number of oriented particles. We note that this proportion could be
a hyperparameter depending on factors such as the GPU memory
size. For Part (2), we perturb the point location by x, +dn along each
seeder’s normal, where xp is the seeding location, n is its normal
direction, and d is a random distance to the interface in the range
[—€, +€]. In the actual training, these distance values are normalized
between [0, 1] and will be mapped back to their actual values after
training.

For Part (3), for each coarse grid being marked as interface, we
randomly select fine grid cells it contains, allowing possible dupli-
cate selections, equal to 1% of the total number of oriented particles
maintained. A sample point is randomly placed inside each selected
cell, and use the sign of the cell as the target.

The three groups of particles are collected to train the I-NGP
network.

Network training. Points and their SDF values are encoded fol-
lowing the procedure described in Section 3.2. We pass the final
prediction through a shifted Sigmoid function to clamp the result
into the area of interest. We use a simple mean absolute percentage
error (MAPE) [Miiller et al. 2022] as our loss function, defined as
|prediction — target|/(|target| + 0.01). The termination criterion is
when the loss stops dropping for 60 iterations or exceeds a maxi-
mum of 1000 iterations in 2D or 1500 iterations in 3D. Such criterion
is also considered as hyperparameters that can be adjusted based
on specific use cases.

4 DYNAMIC NEURAL INTERFACE TRACKING

After introducing the static geometric representation, we next present
our dynamic interface tracking method on Neural PLS.
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Fig. 5. We utilize our Neural PLS method to simulate the collision of two dam breaches on a lighthouse.
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Fig. 6. We show an illustration of our sampling strategy in network training.
In this picture, three types of samples are shown: (1) sampled oriented
particles, (2) samples generated from sampled oriented particles, (3) samples
in a fine grid

As shown in Figure 7, our dynamic tracking pipeline consists of
five steps, including

(1) oriented particle advection, (2) sparse grid advection, (3) parti-
cle deletion, (4) sampling and training, and (5) particle reseeding and
normal correction. The whole algorithm is presented with pseudo-
code provided in Algorithm 1. We will elaborate on each of them as
follows.

4.1 Oriented Particle Advection

We advect particle positions using the fourth order Runge-Kutta
(RK4).
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The normal of each particle is updated by following the normal ad-
vection in [lanniello and Di Mascio 2010; Nave et al. 2010]. In an arbi-
trary velocity field, it is given by Dn/Dt = —(Vu)Tn+(nT (Vu)"n)n
and for divergence-free field, Dn/Dt = —(Vu)Tn. Here, Vu,, is cal-
culated as: Vup = 3; u?“((aKi/ax)(xp))T.

Here, K; is the interpolation kernel function, which is chosen to
be bi/trilinear interpolation in our case. A similar formula can be
seen in the literature to calculate gradients on a hybrid Eulerian-
Lagrangian scheme such as [lanniello and Di Mascio 2010; Jiang et al.
2016]. We include the pseudo-code for our RK4 oriented particle
advection in Algorithm 5

4.2 Grid Advection

In order to maintain a far-field SDF field that is valid in terms of its
sign (i.e., for a query point, it needs to return a correct sign) and our
stored sparse SDF field (see Section 3.3), we employ a grid-based
advection scheme to update the SDF values on both levels of our
sparse grid. Initially, we employ a forward RK4 semi-Lagrangian
advection method to advect the fine level grid cells from the previous
timestep and mark the fine level grid cells in the current timestep
that contain these locations in the bitmask. Additionally, we mark
all the fine level grid cells that contain advected oriented particles
in the current timestep, as well as their neighboring cells. For each
marked fine cell, we will change the tag of the coarse level grid that
contains it to interface and mark all the fine cells within the coarse
level grid. Subsequently, on these identified fine cells, we perform a
backward RK4 time integration to update their SDF values. We also
update the sign value of the coarse grid using backward RK4 time
integration for their tags.

4.3 Particle Deletion & Cell Masking

Like the PLS method, we need to address interface merging explicitly
on the particle level by deleting particles that are colliding. We have
designed a routine for particle deletion that only deletes particles if
particles with different orientations are too close to each other. In
particular, these criteria are:

e Two particles have a relative distance |x;; - x‘{,|§ < 2¢, where
€ is the narrow band width. )
e Two particles have different orientations, n;, . n;, < 0.
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Fig. 7. The interface tracking pipeline comprises five essential components. First, we advect particles along with their associated normals (Step 1). Next,
we update the ¢ values on the fine grid and the cell types on the coarse grid (Step 2). Then, we merge interfaces by removing surface particles (Step 3).
Subsequently, utilizing the sampling criteria outlined in Section 3.4, we reconstruct the narrow band representation of ¢ through training the -NGP model
(Step 4). Finally, we perform normal correction based on the newly trained narrow band ¢ and resample points through an iterative projection using ¢ (Step 5).

Due to particle deletion and interface merging, not all fine-level
cells will require correction from the network-predicted SDF value.
Therefore, we maintain a mask M denoting the fine-level cells that
will be corrected for their stored SDF value using the criteria of the
number of oriented particles contained in the cell. The mask M is
updated after the particle deletion step. The cell in M will be marked
if it contains no less than 4 oriented particles or it’s in the neighbor
of such cell. If a cell in M contains less than 4 oriented particles,
only itself will be marked but not its neighbors. Such marked cells
will be noted as requiring correction after network training and
their stored SDF value will be updated (See Algorithm 3).

4.4  Sampling and Training

Following the procedure described in Section 3.4, we train a narrow
band representation of the level set value. After training the model,
we apply it to predict the ¢ value for each center of the fine level
grid cell. If a cell is marked in M, we replace its value with the
corresponding prediction from the network and use the level set
advected value if the cell is not marked (See Algorithm 4). Notice
we only use cells marked in M for training since only those cells
are needed for correction and are contained in the narrowband of
interest. For each interface cell in the coarse level of the sparse grid,
we examine whether its children contain absolute level set values
that differ by less than 0.1Ax where Ax is the grid spacing. If this
condition is satisfied, we remove the interface tag of the coarse grid
and use the tag exterior/interior instead.

4.5 Particle Reseeding and Normal Correction

After obtaining the corrected SDF values from the training step,
we proceed to correct the normal vectors carried by the particles.

This correction is achieved using finite differences by dividing the
gradient of ¢ by its magnitude, resulting in V¢ /|V¢|.

Particle reseeding is then conducted based on two criteria. Firstly,
if the number of particles in a fine level grid cell is fewer than 32
in 3D or 16 in 2D, and the cell is marked in M, reseeding takes
place. Secondly, if the carried value in the fine level grid cell is
less than cAx, where ¢ = 0.1, reseeding is performed. Reseeding
will stop if the maximum allowed number of particles is exceeded.
Particles seeded in cells of interest are then projected to the interface
using a Newton-style procedure. For a given point x, we iterate
Xi+1 = xi — ¢(xi)Vp(xi)/|V¢(x;)| until the sampled particle has
¢ < 1%Ax, which serves as the stopping criterion [Saye 2014]. If
a particle satisfies ¢ < 1%Ax and is not located inside a solid or
outside a wall boundary, we compute its normal vector and add it
to the maintained group of oriented particles.

5 VALIDATION

In this section, we present 11 classical test cases that are commonly
used to evaluate level set schemes. The computation domain for
all examples is confined to a unit hypercube, ie., [0,1]% for 2D
examples and [0, 1]3 for 3D examples. Shapes within these test cases
have been normalized to accommodate the domain size. We show
the hyperparameter settings in Table 1 and timing comparison
between the PLS method, narrow-band FLIP (NB-FLIP) and ours in
Table 1 and Table 2. To ensure a fair comparison in terms of accuracy
and performance, we implemented our version of PLS following
[Enright et al. 2002] and NB-FLIP following [Ferstl et al. 2016], both
using Taichi on GPU.

To obtain the necessary information for our method, we either
need an implicit function that delineates the shape, such as a func-
tion representing a circle in 2D or a sphere in 3D, or a mesh that
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Fig. 8. Simulation of the moving paddle in a water tank. Solid and fluid are one-way coupled with solid velocity driving fluid movement.

ALGORITHM 1: Neural Level Set Tracking

ALGORITHM 2: Resample Oriented Particles

Initialize : Oriented Particle xpt, Fine level set grid ¢ s Coarse level
set grid ¢

while simulation continues do

Advect xp” and u’ using Algorithm 5 /x Section 4.1 */;

Set ¢pZ*! containing qﬁ} after advection using RK4 as interface;

Set ¢L*! containing x,'*! as interface;

for each cell in 1! as interface do /* Section 4.2 x/
‘ update ¢}+1 contained by ¢4t with ¢? using RK4;

end

Update label on ¢2*! for exterior/interior using RK4;

Delete oriented particles based on Algorithm 3;

Train NGP with Algorithm 4;

for each marked grid cell in gbj’,“ do

Correct 43}“ with NGP using its cell center location as
input

end

for each cell in L™ as interface do

if all fine grid cells having ||¢}”| — €| < 0.1Ax then

‘ Set #L*1 to exterior/interior based on sign of ¢}+1;

end
end
Add external force and solve for pressure using ¢*1;
Correct normal carried on x; /% Section 4.5 x/;

Resample x;, as needed with Algorithm 2.
end

effectively demonstrates the isosurface. For instances where implicit
functions are used, points are uniformly sampled from the func-
tion, followed by the calculation of the normal vector at each point.
When working with meshes, points are uniformly sampled from
each triangular patch, and the normal of the triangle is used as the
normal for the respective points.

For the subsequent test cases, the auxiliary sparse grid structure
is omitted, and a pure-oriented particle representation is exclusively
employed. This approach is justified by the implicit provision of
velocity fields in advection tests, thus eliminating the need for a
grid structure. The time steps within our simulation examples are
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Variable : Py, 4, maximum number of particles allowed, fine level
set grid ¢ ¢, oriented particles xp, newly seeded particle X,
for each grid cell in ¢}+1 do
if (cell contains xp Vv qﬁ}“ < 0.1Ax) A Num(xp) < Ppmax then
Randomly seed an oriented particle %, in cell;
while less than maximum iteration do
if |¢| < 1%Ax then
Add particle %;, to oriented particle set;
break;
end
Project particle X, with
5 =5 - $ (5 V) /1Y ()|
end

end
end

ALGORITHM 3: Delete Oriented Particles

t+1 +1

for each pair of oriented particle xp,"** namely xpﬁ

/* Section 4.3 */ do
. 1+1 1+1)2 t+1 t+1
if [xpi* — Xp’ |5 < 2€ andnp;™" - 't < 0 then

i
Delete x,2*! and x,2*;
Pi Pj

1+1
and Xp'

end
end
for each fine grid cell in p2*! as interface /x Section 4.4 x/;
do
if ¢Z*1 contains more than 4 particles then

‘ Mark ¢}+1 and neighbor cells in [—¢, €]¢ as require update;
else

‘ Mark 45}*1 as require update;

end
end

purposefully varied, thereby demonstrating that the stability of
our method is unaffected by the time step. All experiments were

conducted on a Nvidia Quadro RTX8000 GPU.
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Fig. 9. We simulate Armadillos dropping into a tank using our Neural PLS method.

ALGORITHM 4: Train I-NGP

Variable : oriented particles xp, fine level set grid ¢, coarse level
set grid ¢

Initialize C and V' as empty storage for training, where C will store
cells location range in computational grid and V' will store binary
level set values, i.e. —€ or €.;

for each fine grid cell in $-*1 as interface do

if ¢&1 is marked as require update then

Collect such cells in C and store —€ or € in V based on its
sign;

end

end

while not exceed maximum iteration do

Sample T; in xp"*! with ¢; = 0;

Sample Tp, using T; + dn where d < rand(—¢,€) with ¢, =d ;

Sample T, in C with value ¢4 in V;

Train NGP with [T;, Ty, Ty | with value [¢;, ¢y, pg] using loss:

rediction—target
yd getl.
([target|+0.01) ’

end

ALGORITHM 5: Oriented Particle Advection

Variable : coordinate x, velocity u, normal n

(u1, Vuy) « Interpolate(u, x);

ony = —Vu T

X1 «— X+0.5- At -uy;

ny < n+0.5-At-6nyg;

(ug, Vuy) < Interpolate(u,x1);

Sny = —Vuy'ny;

Xg — X+ 0.5 At - uy;

ny < n+0.5- At Sny;

(u3, Vus) <« Interpolate(u,x2);

6n3 = —Vllngz;

X3 < X+ ‘At - us;

n3 < n+-At - dns;

(u4, Vuy) < Interpolate(u,x3);

5114 = —VU4Tn3;

xnex(:u+% “At-(ug+2-uz+2-us+uy);
1

nnext:n+6 - At - (51‘11 +2~5n2+2~5n3+5n4);

*

(b) 32002 level set method

(a) 1600? level set method

(c) 800? PLS method (d) 800% ours

Fig. 10. The Spike Disk is evolved in an implicit rigid rotation velocity
field. In each method, the simulation results are depicted in the left figure,
with the zoomed-in results showcased in the right figure. The black outline
represents the isosurface at ¢ = 0, while the colored shape represents the
isosurface at t = 4.

5.1 Diffusion Test

We demonstrate the efficacy of our method with a constant ve-
locity field u = —n(y — 0.5) and v = 7(x — 0.5) and employ-
ing a shape represented by x = sin(8)(1 + 0.25 cos(206))/4 + 0.5
and y = cos(6)(1 + 0.25cos(200))/4 + 0.5. We uniformly sample
0 from [0, 27r] and calculate the location of each point using the
aforementioned function. The normal vector of each point is com-
puted as ny = (cos(2060) + 4) sin(6)/16 + 5 cos(8) sin(206) /4 and
ny = (cos(200) +4) cos(0)/16 — 5sin(0) sin(200) /4.

This shape, replete with spiky features that could be readily
smoothed out, necessitates a high-resolution grid to accurately cap-
ture the geometry’s spikes. However, using our method, we only
need to sample points on the surface, reducing the number of points
required to capture the shape’s detail. For this example, we use
At = 0.002 and execute marching squares on an 8007 field. Figure 10
presents the results derived from our method. The results obtained
using PLS method with a 800% resolution and the level set method
with 16002, 32007 resolutions are included for comparison. Table
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Fig. 11. A disk is evolved in a single vortex velocity field. The left figure of each method illustrates the results of the evolution, while the right figure highlights
the zoomed-in results in the final frame. The black circle in the final frame represents the isosurface of the disk at # = 0.

3 provides a measure of area loss for these methods. The results
demonstrate that our method significantly outperforms the two
level set methods in capturing the spikes and surpasses all three
methods in terms of area loss.

5.2 Single Vortex

In addition to demonstrating our method’s capability to overcome
diffusion errors generated by the level set method, we also showcase
its ability to handle level set evolution under conditions of stretching
and tearing flow. For this purpose, we utilize the benchmark test
case suggested in [Enright et al. 2002]. A circle with a radius of
0.2 is centered at [0.5,0.75], which is deformed by a divergence-
free velocity field given by u = 2 sin®(7x) sin(rry) cos(ry) and v =
—2sin(7x) sin? (7y) cos(zx). We reverse this velocity field at t = 6
such that the deformation reaches its peak at t = 6 and subsequently
returns to its original shape at t = 12. To derive the initial surface
points, we uniformly sample the circle and compute their normals
as normalize(x — c), where c represents the circle’s center and x
represents the sample point. Employing a time step of At = 0.004,
we execute marching squares on a field with a resolution of 8002
to display the results. The original shape of the circle is plotted
at the end of the simulation to enable a comparison of area loss.
We also perform the same evolution using the PLS method with a
8002 resolution and level set method with resolutions of 1600% and
3200. As presented in Figure 11, our method successfully restores
the original shape at the conclusion of the simulation, whereas the
other three methods experience some degree of distortion from the
original form. Furthermore, our method demonstrates the lowest
area loss among the other methods, including level set method, PLS,
FLIP, and NB-FLIP, as shown in Table 3. Here, NB-FLIP only serves
as a surface tracker in 2D where the velocity field is analytically
given. This result attests to the capability of our method in tracking

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2025.

an implicit interface under 2D scenarios with stretching and tearing
background flow fields.

5.3 Mean Curvature Flow

In the context of a self-generated velocity field like mean-curvature
flow, the velocity is defined as u = —bxn and the transport equation
d¢p /ot +u - V¢é = 0 then become:

a¢_
at

bKV—¢ -V = bk|Vg|

i @

For each time step, we compute the curvature x using Vr - n.
We demonstrate our method on two shapes. One is defined by x =
sin(0)(1+0.25 cos(50))/4+0.5and y = cos(8)(1+0.25 cos(50)) /4+
0.5, the other is defined by x = sin(6) (1 + 0.5 cos(66))/4 + 0.5 and
y = cos(0)(1+0.5cos(60))/4+0.5.

The surface divergence Vr is obtained by taking the finite differ-
ence over the normal vector in the surface tangential direction. For a
given point x, we first obtain its surface tangent tx from nx. Surface
divergence is then computed using (—ny_ax - tx + Dx+ax - tx)/2.

We calculate the mean curvature
for a small kernel with a radius of
0.005 and use it as the curvature for
point x. The velocity field derived
from this curvature is used to com-
pute Vu using finite differences in
order to advect the normal with the
same Ax. However, Vu can pose nu-
merical issues and cause the normal
n to become noisy after several sim-
ulation steps. To tackle this issue, we
calibrate the normal vector and surface point as follows:

.. New Point Location

Projected Point
AS




t=10.0 t=0.015 t=0.03

t=0045 N t=006 . t=0075

t=0.09 . t=0.105 t=012

Fig. 13. A star is evolved under mean curvature flow

e Average the normal vector of a surface point in its normal
direction in the narrow band.

o For this surface point, sample two points at distances of —Ax
and Ax along its tangent direction, and project the two points
onto the surface using their normal vector and the kernel
function value in the narrow band (Figure 12).

o Calibrate the surface point location by averaging the locations
of the two projected points.

e Remove the calibrated point if its location is not close enough
to the isosurface predicted by the network.

The calibration process is performed every 10 simulation steps. In
the two examples, we use At = 0.0005 and At = 0.0001, respectively.
To visualize the results, we plot the surface using the marching
squares algorithm on an 8002 grid (see Figure 13 and Figure 14).

5.4 Crazy Rotation

To further demonstrate the capabilities of our method, we apply
it to a rotating velocity field where a circle with a radius of 0.2
centered at [0.3,0.3] is positioned. The velocity field is defined
asu = (0.5 - 4)/(y/(x-05)2+(y—0.5)2) and v = (x — 0.5)/
(v/(x = 0.5)2 + (y — 0.5)2). We simulate this rotation until ¢ = 35,
depicting the resulting shape using marching square on a field of
50007 resolution in Figure 15. The corresponding PLS simulation
result with a resolution of 5000% is displayed in Figure 16. The
simulation output of our method closely resembles that of the PLS
method. To showcase the ability of our method to capture fine
details, we also provide a zoomed-in isosurface in Figure 17, where
the resolution ranges from 800 to 500000.
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t=10.0 t=001 t=0.02

t=003 5 t=004 N t=0.05

t=0.06 t=0.07 t=0.08

Fig. 14. A hexagonal star is evolved under mean curvature flow

5.5 Rigid Body Rotation of Armadillos

Armadillos are a common test case for evaluating the ability of mesh
processing and reconstruction methods to represent fine details. We
opted to use an Armadillo as our test object to evaluate diffusion
error in 3D, as opposed to a 3D Zalesak’s sphere, which we consider
less suitable for this purpose. We normalized the Armadillo to a
unit cube and scaled it down by a factor of 2, before positioning
the center of its bounding box at [0.5,0.5,0.5]. The velocity field
is givenby u = 0.5 -y, v = x — 0.5 and w = 0. To visualize the
isosurface, we performed marching cubes on a 12003 grid, which
enabled us to exhibit fine details and demonstrate that the surface
did not suffer from any smoothing effects, as shown in Figure 19.

5.6 3D Deformation Field

We employ the classical benchmark presented in [Enright et al. 2002]
to evaluate the effectiveness of our method. The velocity field is de-
fined as u = 2 sin®(7x) sin(27y) sin(27z), v = — sin(27x) sin?(7y)
sin(27z) and w = — sin(27x) sin(27y) sin? (77z). We position a sphere
with a radius of 0.15 centered at [0.35, 0.35,0.35]. In Figure 21, we
reverse the velocity field at ¢ = 2 such that the deformation reaches
its maximum at ¢ = 2, and should recover the original shape at the
end of the simulation. In addition, we employed the PLS method at
a resolution of 5003 —the maximum allowed by the computational
resources available on the same GPU used in our experiments—and
conducted the NB-FLIP method at the same resolution for a fair
comparison during the evolution process. In this scenario, the back-
ground advection velocity fields are analytically prescribed, and
thus all methods presented here function solely as implicit interface
trackers. As shown in Figures 21, 22, and 23, our method successfully
restores the original shape, whereas the PLS method exhibits some

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2025.



12« Duowen Chen, Junwei Zhou, and Bo Zhu

Fig. 15. A disk is evolved in a rotation velocity field using Neural PLS method

AR NN

Fig. 17. We illustrate resolution independent representation ranging from
8002 to 500000% using our neural-PLS method. As we can track up to 500000
resolution, noise from the network does appear if the resolution goes too
high.

inaccurately advected volumes by the end of the recovery process,
and the NB-FLIP method loses a significant amount of volume along
the sphere’s midline. We attribute the superior performance of PLS
over NB-FLIP to the fact that NB-FLIP is not inherently designed for
interface tracking and operates similarly to single-sided PLS. Fur-
thermore, our method outperforms the PLS method by effectively
restoring the original shape and demonstrating improved volume
retention, benefiting from the use of normal information and the
adaptivity provided by the instant-NGP backend. This test case has
been further explored in [Gibou et al. 2018] by using an adaptive
forest of octrees proposed in [Mirzadeh et al. 2016] and simulating
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t=1i0 t= 380 - f= 350

Fig. 16. A disk is evolved in a rotation velocity field using PLS method

Fig. 18. Here, we present an experiment involving the rotation of Armadillos
over a duration of 4.56 seconds, driven by a rigid rotation velocity field (refer
to Section 5.5 for the definition of the velocity field). We compare the results
obtained using our method with two other approaches. On the left, we
show the results obtained by advecting the Armadillos using our method,
which utilizes oriented particles for tracking the interface. In the middle, we
perform the experiment using the previous timestep model as the ground
truth, and we advect sample points from the current timestep backward to
read their values directly. On the right, we conduct the same experiment as
in the middle scenario, but we enforce the surface particles to carry a level
set value of 0.

until £ = 9 using a supercomputer with the finest resolution of 4096°.
Our method can also produce similar results, as demonstrated in
Figure 2. We used marching cubes with a 1500% resolution to vi-
sualize the isosurface. In this test, to achieve better representation
ability, we disabled the early stopping mechanism and chose longer
optimization iterations.
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Fig. 19. The surface of the Armadillo does not experience any smoothing
effect during rigid rotation.

6 FLUID SIMULATIONS

In this section, we present the 3D results of applying our method
to fluid simulations. We use Taichi [Hu et al. 2019] in our fluid
simulation because of compatibility and its support for GPU and
sparse grid. Our fluid simulation is based on the standard grid-based
advection-projection incompressible fluid solver [Foster and Fed-
kiw 2001] with RK4 advection scheme. We also used a Ghost-Fluid
Method [Gibou et al. 2002] for pressure solving for our method,
PLS and NB-FLIP to prevent stair-case artifacts and explicit surface
tension handling [Enright et al. 2003]. We resample all the parti-
cles and their normals every 25 steps to prevent particle clustering
due to drastic fluid movement. We utilize a 256% resolution in our
simulation for both the Poisson solver and the fine grid representa-
tion of the level set grid. The maximum total number of oriented
particles allowed in the four experiments is 2000000. The network
configuration comprises 16 levels of spatial hashing resolution
with 1.5 as the growth factor. We employ the hash table size of 2!°.
We have determined that this set of parameters provides us with a
sufficient level of accuracy in encoding the narrow band level set,
while still maintaining good performance in terms of running time.
However, it is worth noting that these settings can also be adjusted
and fine-tuned based on specific requirements or preferences. The
fluid experiments are conducted on Nvidia Quadro RTX8000 GPU.
We present the performance of fluid simulation at the end of this
section, followed by a brief discussion.

6.1 Collision of two dam breaches on a lighthouse

In this example, we demonstrate that our method is capable of gener-
ating a dynamic water surface and energetic solid-fluid interactions.
We position two fluid blocks at x = 0.15 and x = 0.85 with a height
of 0.2. The simulation results are exhibited in Figure 5.
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6.2 Random sphere drop into a tank

In this scenario, we aim to demonstrate that our interface merging
technique can handle complex topology changes under highly dy-
namic fluid surface movements. We uniformly position 16 spheres
on the x and z coordinates and perturb them randomly on the y
coordinate. The water surface is located at y = 0.2. We uniformly
sample points on all geometries weighted by the surface area of
the geometry. To evaluate the performance of our approach, we
compared it with two other methods: PLS and NB-FLIP. For the
NB-FLIP implementation, we followed the approach described in
[Ferstl et al. 2016]. To ensure a fair comparison, we conducted two
versions of free-surface fluid simulations using the NB-FLIP compo-
nent in different ways: (1) employing NB-FLIP solely as an interface
tracker, where particle velocities in the narrow band do not influ-
ence the fluid velocity field discretized on the background grid, and
(2) employing NB-FLIP both as an interface tracker and as part of
the simulation, where the particle velocities in the narrow band are
blended with the grid velocity (as in typical PIC-FLIP fluid solvers).
The motivation for including the interface-tracking-only version of
NB-FLIP was to align with the roles of PLS and Neural PLS, both
of which function only as interface trackers without directly influ-
encing the fluid velocity near the interface. As shown in Fig. 25, we
conducted five experiments: (1) PLS as an interface tracker with a
grid-based Eulerian fluid solver (PLS Tracking + Eulerian Simula-
tion), (2) NB-FLIP as an interface tracker with a grid-based Eulerian
fluid solver (NB-FLIP Tracking + Eulerian Simulation), (3) NB-FLIP
as an interface tracker combined with the PIC-FLIP fluid solver in
the narrow band (NB-FLIP Tracking + Lagrangian-Eulerian Sim-
ulation), (4) Neural PLS as an interface tracker with a grid-based
Eulerian fluid solver at a resolution of 256 X 256 X 256 (Neural PLS
Tracking + Eulerian Simulation (256)), and (5) Neural PLS as an in-
terface tracker with a grid-based Eulerian fluid solver at a resolution
of 512512 512 (Neural PLS Tracking + Eulerian Simulation (512)).
From the simulation results, we observed the following:

e PLS Tracking + Eulerian Simulation v.s. NB-FLIP + Euler-
ian Simulation v.s NB-FLIP + Lagriangian-Eulerian Sim-
ulation (Row 1, 2 and 3): The first two show notable similari-
ties, whereas the full NB-FLIP (NB-FLIP Tracker + Lagrangian-
Eulerian Simulator) achieves a less viscous and more energetic
surface. This indicates that (1) when NB-FLIP is employed
purely as an interface tracker and used together with a grid-
based fluid solver, it behaves similarly to PLS, and (2) only
when NB-FLIP is used as both an interface tracker and a back-
ground simulator (i.e., particles contribute to fluid advection)
does it produce an energetic fluid surface mention, which has
been commonly observed in past FLIP / NB-FLIP literature.
PLS / NB-FLIP Tracking + Eulerian Simulation v.s. Neu-
ral PLS Tracking + Eulerian Simulation (256) (Row 1,
2 and 4): In contrast to the two methods, our method main-
tains a more energetic free surface, attributed to utilizing a
single layer of tracking particles and the interface’s normal
evolution.
e NB-FLIP + Lagriangian-Eulerian Simulation v.s. Neural
PLS Tracking + Eulerian Simulation (256) (Row 3 and 4):
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Fig. 20. Here we show an experiment performed on comparing volume loss under rigid rotation velocity field and single vortex deformation field. We aim
to study the influence of hyperparameters of I-NGP on the capacity for preserving volume under diffusion tests. Here, H represent hash table size and L
represent the maximum level of resolution. We use a growing factor as 1.5 in all experiments. A fixed number of 1500 epochs are used for 3D and 1000 epochs

are used for 2D.

Fig. 21. A sphere is evolved in a 3D deformation field using Neural PLS
method.

Compared with the NB-FLIP + Lagriangian-Eulerian Simula-
tion result, our method gives comparable behavior in terms
of fluid turbulence and dynamics without letting particles
influence fluid velocity at the interface. Such behavior can
be attributed to the gradient information carried on particles
with the adaptiveness provided by the network backend.

e Neural PLS Tracking + Eulerian Simulation (512) (Row
5): We further illustrate our method has the potential to han-
dle large scale surface simulation by including a 512 resolution
fluid simulation.

Hence, by utilizing adaptiveness and gradient information, our
method gives the most satisfying result compared to the other sim-
ulation methods provided here.
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Fig. 22. A sphere is evolved in a 3D deformation field using the PLS method.

6.3 Armadillos drop into a tank

In this scenario, we aim to illustrate our method’s ability to preserve
the fine details of a level set without suffering from diffusion errors.
We observe that the claw of the Armadillos maintains its sharp
features throughout the process of dropping into the fluid tank,
and similarly, its other details on the surface remain unchanged.
Specifically, we use fast marching to initialize a fine grid of level set
values for the Armadillos and sample particles on the triangle mesh
of the Armadillos to obtain our surface particles. After initialization,
the simulation procedure follows the method stated in Section 4.
The simulation results are shown in Figure 9.

We also display a zoomed-in picture before the Armadillos drop
into the tank to illustrate how our method preserves the geometric
details on the Armadillos (see Figure 26).



Fig. 23. Asphere is evolved in a 3D deformation field using NB-FLIP method.

With Ghost Fluid Method Without Ghast Fluid Method

Fig. 24. Ablation study on using the Ghost Fluid Method.

6.4 Moving paddle in a tank

In this case, we show our method with fluid simulation coupled with
dynamic solid boundaries. Here we use a solid paddle with height
of 0.5, width of 0.2, and thickness of 0.1 located at the center of the
tank. We move the paddle with a fixed location function by setting
its x coordinate offset as 0.25sin(2st/2.5). Solid boundary velocity
is then calculated with finite difference. We observe symmetric
patterns along z axis and vortex forms at the edge of the paddle.
The simulation results are shown in Figure 8.

7 ABLATION STUDY

In this section, we conduct three ablation studies to show the neces-
sity of the oriented information carried on particles to aid network
training, the influence of I-NGP hyperparameters on the volume-
preserving capacity of our method and the necessity of using second-
order Ghost Fluid Method [Gibou et al. 2002] to prevent staircase
artifacts.
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7.1 Orientation Information

We demonstrate the significance of orientation information carried
on particles by highlighting the limitations of relying solely on the
trained model from the previous timestep. It should be noted that
the reason for resorting to the previous timestep model is the lack
of information to reconstruct the level set at the current timestep
without employing computationally intensive methods such as fast-
marching [Sethian 1999] or fast-sweeping [Zhao 2005]. The exper-
iments are performed on the 3D rotation test of Armadillos (see
Figure 18) Instead of utilizing orientation information to reconstruct
the level set value, we employ a high-order time integration scheme
to trace back to the previous timestep and consider the model pre-
diction from that timestep as the ground truth. Two experiments
are performed: (1) in the first experiment, both surface particle loca-
tions and narrow-band locations retrieve values from the previous
timestep; (2) in the second experiment, surface particle locations
enforce a level set value of 0, while narrow-band values are obtained
from the model in the previous timestep. Due to the accumulation
of errors during advection and model prediction, the result exhibits
artifacts as shown in Figure 18. To ensure a fair comparison, approx-
imately 200,000 points are employed in these two tests, which aligns
with the number used in the experiment conducted with oriented
particles for reconstruction. The training time for each experiment
increases to 280.74s and 225.60s, respectively, as each sampling step
involves the use of RK4 integration and model inference, in contrast
to the 9s shown in Table 1.

7.2 Hyperparamaters

We present our study on I-NGP hyperparameters that affect volume
loss. We conducted experiments with hash table sizes (H) chosen
from [212,216,21° 221] and maximum levels of resolution (L) se-
lected from [12, 16, 19, 21]. The growth factor was consistently set
to 1.5. In these experiments, we maintained comparable volumes at
both the initial and final frames. We then showcased the volume
loss for three experiments conducted under different parameter set-
tings, as depicted in Figure 20. Furthermore, we displayed the Mean
Absolute Percentage Error (MAPE) of the volume compared to the
ground truth volume at the first frame. Our observations revealed
a pattern similar to that demonstrated in [Miller et al. 2022]. We
observe significant improvement once H > 19 and L > 16, however,
the improvements are relatively small once such threshold is passed.
As improvements come with a cost on performance, consequently,
we opted to adhere to the default hyperparameter settings (H = 19,
L = 16), which are considered suitable for general use cases and use
this in our fluid simulation scenarios.

7.3 Ghost Fluid Method

We investigate the necessity of the Ghost Fluid Method (GFM) in
mitigating staircase artifacts, as in Fig. 24. Previous studies, such as
[Goldade et al. 2016], have demonstrated that staircase artifacts can
arise when erroneous level set values outside the narrowband are
used. A similar issue occurs when the GFM is replaced by a binary
cell-type classification (e.g., fluid versus air). By employing the GFM,
we can obtain a smooth and continuous surface, demonstrating its
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Fig. 25. We compare the simulation results of random sphere dropping into tank using PLS (first row), NB-FLIP method with Eulerian fluid solver (second
row), NB-FLIP method with Lagrangian-Eulerian fluid solver (third row), our Neural PLS method with Eulerian simulation at resolution of 256* (fourth row)
and resolution of 5123 (last row). Here the names are represented as interface tracking method + underlying type fluid solver.

Fig. 26. We show a comparison of details on Armadillos stay unchanged
when it merges into fluid (right) from the initial setting (left).

ability to maintain accurate level set values within the narrowband
and effectively eliminate staircase artifacts.
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8 DISCUSSION

As shown in previous sections, our method contains an I-NGP mod-
ule and a training step to realize high-resolution interface tracking.
In this section, we discuss the rationale for incorporating the I-NGP
module instead of using a traditional adaptive SDF and the influ-
ence on performance with such a decision. Following these, we will
also briefly discuss the relationship between our method, PLS, and
NB-FLIP in the context of interface tracking and fluid simulation.
Finally, we will briefly discuss why sparse grid implementations are
not included for PLS or traditional level set methods, and why we
opted to use oriented particles for seeding training points.

I-NGP vs Traditional Adaptive SDF. I-NGP [Miiller et al. 2022]
and adaptive SDF [Frisken et al. 2000], both capable of encoding
geometry details, differ from each other in the following ways. We
comprehend the I-NGP backend of our framework as an extremely



adaptive spatial discretization that is easy to implement. We elab-
orate this in two aspects. Firstly, I-NGP establishes a hierarchical
structure of hash tables to manage sparse, overlapping grids, en-
abling an exceptionally adaptive spatial discretization. This flexi-
bility allows for grid resolutions to reach as high as 221 4 feat that
would be unattainable when employing traditional SDF methods
on a single workstation (see example in Fig 2). Secondly, when
traditional adaptive SDF methods are employed, they necessitate
intricate implementations involving non-overlapping cell subdivi-
sion, T-junction handling, and level-set reinitialization, typically
associated with a conventional adaptive structure such as an Octree.
In contrast, I'NGP sidesteps the intricacies of these implementa-
tions by constructing a concatenation of feature vectors from grids
and subsequently training a compact neural network to translate
these vectors into SDF values (more details for I-NGP in Fig. 4 and
training pipeline in Sec. 4.4). This streamlined approach simplifies
the process considerably but at the cost of non-negligible network
training time.

Performance. For our fluid simulation performed on the Nvidia
Quadro RTX8000 GPU, each substep of the simulation takes approx-
imately 30 seconds to complete. The MGPCG Poisson solver, which
handles the complexity of the fluid scene, takes around 1.5 to 2.5
seconds. The training process itself takes around 10 to 20 seconds.
Although we note that most of the running time is dedicated to
training the I-NGP component underpinning the Neural PLS rep-
resentation, we mark that: First, this allows level set evolution to
achieve resolutions unachievable for single workstation; Second,
this significantly hides implementation complexity (e.g., Octree),
especially under dynamic settings; Third, this is the first implicit
neural representation that can effectively accommodate physical
simulations by producing results with state-of-the-art qualities.

Relationship between PLS, NB-FLIP, and Neural PLS. In the context
of interface tracking, our method differs from PLS and NB-FLIP by
utilizing a single layer of particles carrying orientation information,
combined with an adaptive spatial discretization approach. Unlike
NB-FLIP, which calculates level-set values using a union of spheres
and requires reinitialization via fast marching or fast sweeping, or
PLS, which uses a correction mechanism with similar requirements,
our method directly calculates level-set values along the normal
direction at each point. As previously discussed, this is facilitated
by the adaptiveness inherent in the instant-NGP training process.
As shown in a series of experiments (see Fig. 10, Fig. 11 and Fig. 21),
our Neural PLS method serves as an effective interface-tracking
algorithm (the same role as the PLS method yet with improved
tracking accuracy), indicating its potential for large-scale applica-
tions. Conversely, the NB-FLIP algorithm, while highly effective as
a fluid simulation tool for generating dynamic free-surface flows,
has inherent limitations in serving as a dedicated interface-tracking
tool like PLS or Neural PLS. This limitation is partially attributed to
its single-sided particle layout, making it less effective in tracking
smooth surface evolution compared to PLS or Neural PLS. When
it comes to simulation, NB-FLIP produces energetic free surfaces
when it is used as a fluid simulator and as an interface tracker si-
multaneously. When used solely for interface tracking, it exhibits
behavior similar to PLS. Our Neural PLS method, despite not feeding
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particle velocities to the grid, yields results that surpass those of
PLS and are comparable to those obtained with the full NB-FLIP
approach. We attribute this to the particle’s gradient information
and the adaptivity provided by Instant-NGP, which helps reduce
error and dissipation during interface advection. In conclusion, as a
dynamic interface tracking tool, our method outperforms PLS, and
both our method and PLS show better performance than NB-FLIP.
Within a fluid simulation framework, our method provides results
comparable to the conventional NB-FLIP method (when used as
both tracker and simulator) and outperforms PLS.

Relation between sparse LS, sparse PLS, and neural PLS. We discuss
the relationship between our method with sparse LS and sparse PLS
method. On one hand, the high memory footprint of PLS stems from
the large number of particles needed per grid cell for accurate level-
set advection, typically 64 or more, to densely sample a narrowband
around the interface [Enright et al. 2002]. For instance, as shown in
Fig. 22, PLS requires about 153M particles to achieve comparable
results with our method using only 5.7M oriented particles (plus
0.63M temporary particles every several training iterations). This
reduction is due to differences in sampling: PLS densely populates
a +2Ax narrowband, while our approach tracks only interface par-
ticles (i.e., those with zero level-set value), eliminating the need for
extensive sampling across the entire narrowband. Such results can
also be observed in Fig. 11 and Fig. 10. Since 61% of PLS’s memory
cost is tied to narrowband particles, reducing sparsity outside this
region does little to mitigate its overall memory demand. On the
other hand, the expressiveness of the level-set representation de-
pends on particle usage. As shown in Fig. 11, a PLS representation
on a low-resolution grid (e.g., Ax = 1/800) captures interface de-
tails as effectively as a standard level set on a high-resolution grid
(Ax = 1/3200), despite a 4x resolution gap. Therefore, we prefer
utilizing particles over increasing grid resolution (and its sparse
accelerations) to enhance interface accuracy in dynamic settings.

Oriented Particles for Training. We discuss the rationale for using
oriented particles to sample training points. As outlined in Sec-
tion 7.1, one alternative method for calculating a point’s level-set
value is to trace the current point back to the previous timestep’s
encoded SDF and use its value as the ground truth. However, this
method does not produce satisfactory results. As shown in Fig. 18,
the advected level-set value does not remain precise, resulting in an
unsmooth surface and blurred details. Another alternative is ran-
domly sampling points around the surface particles within a small
narrowband and computing each point’s distance to the surface
for the current time step. However, employing K-nearest neighbor
searches or Octree spatial hashing methods to locate the closest
surface points for each sampled narrowband point and compute
the corresponding distance would introduce substantial compu-
tational overhead. In particular, approximately 2,000,000 surface
particles are used in the training loop, and training points must be
re-sampled within the narrowband to train the I-NGP every few
iterations using a portion of the surface particles, both render this
strategy impractical for a high-resolution setting (e.g., Fig. 2 and
Fig. 25). In contrast, our method can directly give the sampled parti-
cle an SDF value using carried orientation information which allows
a faster performance.
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Advection Test Maximum Number of Particles Network Param Training Time Advection Time
Zale’s Disk 28000 L:16 H:2T° S:1.5  2.17 sec/frame 0.0003 sec/step
Spike Disk 28000 L:16 H:216 S:15  2.19 sec/frame 0.0003 sec/step
Single Vortex 200000 L:16 H:216 S:15  3.74 sec/frame 0.0018 sec/step
Crazy Rotation 600000 L:16 H:21% S:1.5 9.43 sec/frame 0.0028 sec/step
3D Armadillos Rotation 200000 L:16 H:21 S:1.5 9.11 sec/frame 0.0024 sec/step
3D Deformation Field 6000000 L:16 H:2' S:1.5 22.03 sec/frame  0.0795 sec/step
3D Deformation Field (Longer Version) 50000000 L:21 H:221 S:1.5 13135 sec/frame  0.445 sec/step

Table 1. Results: Details of Experiments. In the column of Network Param, L represents the level of resolution, H represents hash table size and S presents
the growing factor between levels of resolution. Notice in Network Param, the hyperparameters can be tuned to achieve a balance between accuracy and

running time.

Advection Test Method Resolution Total Time Advection Time
Zale’s Disk Level Set Method 1/3000 0.0236 sec/frame  0.0027 sec/step
Zale’s Disk Level Set Method 1/6000 0.0563 sec/frame  0.0072 sec/step
Zale’s Disk PLS Method 1/1500 0.0175 sec/frame  0.0002 sec/step
Spike Disk Level Set Method 1/1600 0.0126 sec/frame  0.0012 sec/step
Spike Disk Level Set Method 1/3200 0.0269 sec/frame  0.0041 sec/step
Spike Disk PLS Method 1/800 0.0105 sec/frame  0.0002 sec/step
Single Vortex Level Set Method 1/1600 0.0011 sec/frame  0.0004 sec/step
Single Vortex Level Set Method 1/3200 0.0011 sec/frame  0.0004 sec/step
Single Vortex NB-FLIP Method 1/800 0.0288 sec/frame  0.0010 sec/step
Single Vortex PLS Method 1/800 0.0051 sec/frame  0.0003 sec/step
Crazy Rotation PLS Method 1/5000 0.0208 sec/frame  0.0005 sec/step
3D Deformation Field PLS Method 1/500 0.3160 sec/frame  0.0005 sec/step
3D Deformation Field NB-FLIP Method 1/500 2.7295 sec/frame  0.0010 sec/step

Table 2. Results: Experiment Details of Compared Methods . We list the method names, resolution, and timing from other methods we compared our

method with.

9 CONCLUSION

In this paper, we introduce a novel hybrid neural-discrete data struc-
ture that combines multi-resolution hash encoding and sparse grids
to represent dynamic level set functions with adaptivity. Our key
contribution lies in the development of an efficient neural-discrete
data structure that enables accurate interface tracking and facilitates
complex physics simulations. This representation decouples the lo-
cation and orientation of the interface, enabling accurate tracking
and reconstruction of dynamic implicit interface with efficient neu-
ral network training. Our method demonstrates, for the first time,
the potential use of implicit neural representations to accommodate
dynamic interface tracking applications with complex geometric
and topological characteristics.

To authenticate the efficacy of our proposed method, we un-
dertake exhaustive advection tests, comparing our results against
those obtained using the PLS method, NB-FLIP method, and the
high-resolution level set method. The experimental outcomes un-
derscore the effectiveness of our method in conserving sharp and
thin features comparable to those derived from super-resolution
level set methods on large-scale clusters, all within a reasonable
computational resource budget. Notably, all our simulations were
executed on a single workstation. Moreover, we employ our method
in conducting physical fluid simulations, successfully capturing the
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complex motions of free-surface fluids while preserving fine fluid
details. These simulations illustrate the practicality and efficiency
of our proposed neural PLS framework in real-world simulation
scenarios by supporting geometric and topological evolution.

Limitation and future work. Firstly, our method currently employs
the I-NGP structure as our neural representation. Despite its known
rapid convergence, we acknowledge that the hash collision char-
acteristic of its design might not be ideal for our specific use case
of encoding level set values. Since each level set value is unique
to a spatial location, hash collisions on a high-resolution hash grid
could potentially affect our method’s performance. An anticipated
improvement involves replacing spatial hashing with a sparse grid
in the I-NGP backend, though this may slow training speed.

Secondly, we aspire to broaden our method to accommodate
non-manifold level set tracking in future research. In non-manifold
applications, distinct regions with different labels are retained to
calculate simulation velocity and enable visualization. Our current
method, while capable of differentiating between two types of re-
gions, cannot dynamically track multiple regions bearing different
labels. The challenge arises from oriented particles not carrying
region labels, making it difficult to transform the unsigned distance
field to regions with different labels in non-manifold applications.
This issue is targeted for resolution in our future work.
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Advection Test Method Resolution % Area/Volume Loss
Zale’s Disk Level Set Method 1/3000 0.2666
Zale’s Disk Level Set Method 1/6000 0.0271
Zale’s Disk PLS Method 1/1500 0.0073
Zale’s Disk Ours 1/1500 (Visualization) 0.0074
Spike Disk Level Set Method 1/1600 -0.3298
Spike Disk Level Set Method 1/3200 -0.2831
Spike Disk PLS Method 1/800 0.0165
Spike Disk Ours 1/800 (Visualization) -0.0150
Single Vortex Level Set Method 1/1600 0.6685
Single Vortex Level Set Method 1/3200 0.1371
Single Vortex PLS Method 1/800 0.0610
Single Vortex FLIP Method 1/800 -0.0661
Single Vortex NB-FLIP Method 1/800 2.229
Single Vortex Ours 1/800 (Visualization) 0.0264
3D Deformation Field PLS Method 1/500 0.7677
3D Deformation Field NB-FLIP Method 1/500 12.3052
3D Deformation Field Ours 1/1500 (Visualization) -0.0008

Table 3. Results: Area/Volume Loss of our result compared over level set method, PLS method, and NB-FLIP method in different advection tests. As our
method uses oriented particles with neural representation, grid resolution for comparison is not well-defined. Therefore, Visualization in the table represents

the resolution we perform marching cube/square.

Thirdly, our current method struggles with tracking tiny splashes
in fluid simulations. This is due to our sampling method necessitat-
ing non-overlapping sampled narrowbands. As a result, we currently
remove oriented particles to prevent overlap, which compromises
our ability to track small splashes. One potential approach to ad-
dress this problem is to adopt the solution presented in [Losasso
et al. 2008], where splashes are artificially created and deleted using
escaped particles. Furthermore, we aim to enhance our sampling
method to naturally handle such situations.

In addition to the aforementioned limitations, we are also in-
terested in further exploring the use of neural representations in
physical simulations. We aim to develop neural-discrete hybrid
methods that leverage the advantages of both approaches, bridging
the gap between physical simulations and neural representations.
Our goal is to achieve computational efficiency while retaining high
fidelity in the simulation results.
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Fig. 27. The Zale Disk is evolved in an implicit rigid rotation velocity field. In
each method, the simulation results are depicted in the left figure, with the
zoomed-in results showcased in the right figure. The black outline represents
the isosurface at ¢ = 0, while the colored shape represents the isosurface at
t=4.
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SUPPLEMENT

1 Zalesak’s Disk

Consider a Zalesak’s Disk, centered at [0.5,0.5] with a radius of
0.2, as an example to demonstrate the diffusion error inherent in
the level set method [Zalesak 1979]. The constant velocity field is
defined as u = —n(y —0.5) and v = 7(x —0.5). The initial isosurface
is represented by a boolean field with a resolution of 4002, with
the isosurface and the rest denoted by 1 and 0, respectively. The
reconstructed level set is initially obtained via a standard fast march-
ing method. Thereafter, we employ the Newton iteration method
in conjunction with the method described in [Yifan et al. 2021] to
project randomly seeded points onto the isosurface. The normal
vector at each point is then computed using finite differences with
normalization. We use At = 0.002 in this test. Figure 27 presents the
results derived from performing marching squares on a 1500 field.
The same three methods as in the Spike Disk example are employed
to provide results for comparison, as displayed in Figure 27 and
Table 3. Our method effectively retains the disk shape after two
rotation cycles, with an area loss nearly identical to that simulated
through the PLS method under the same visualization resolution.
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Fig. 28. A disk is evolved in a deformation field [Enright et al. 2002]. Red
circle in the final frame represents the circle at t = 0 and black circle is the
isosurface at the end of the simulation.
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Fig. 29. A disk is evolved in a velocity field simulated with vortex particle
method [Selle et al. 2005] using two vortex particles with opposite vorticity

Additionally, our method outperforms the level set method at 2x
and 4x higher resolutions (See Table 3 for numerical comparison).
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This demonstrates the effectiveness of our method in overcoming
diffusion errors that arise from interpolation during the advection
process of the level set method.

2 Deformation Field

To demonstrate our method’s capacity to recover the original shape
in the face of a severely distorted velocity field, we employ a field de-
fined in [Enright et al. 2002] as u = sin(z(—4x + 6)) sin(z(—4y + 6))
and o = cos(n(—4x + 6)) cos(m(—4y + 6)). We consider a circle with
a radius of 0.15 centered at [0.5,0.75] and reverse the velocity field
at t = 1, with periodic boundary conditions imposed. The surface
points are again uniformly sampled on the circle, and their normals
are computed in the same way as Section 5.2 as normalize(x—c). We
conduct marching squares on 15002 grids and compare the original
shape with the final shape obtained from our simulation. The results
are presented in Figure 28.
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3 2D Vortex Particle

In order to further probe the robustness of our method in im-
plicit time-varying velocity fields, we adopted the concept of vor-
tex particles to construct a velocity field that simulates vortex
movement, as delineated in [Selle et al. 2005]. This method gen-
erates a divergence-free velocity field using fictitious vortex par-
ticles by applying Biot-Savart’s law to a Green’s function that
provides an analytical solution to a Poisson equation. To com-
pute the velocity of a particle of interest located at x, we consider
the i*" vortex particle denoted as vp; with vorticity ;. The ve-
locity of the particle of interest at each timestep is then given by
T = X—Vp,, ¢i = (1—exp(—|riIZ/ez))/(anri|2+s), U= —Tiywic;
and v = }; rixwjc;. To prevent numerical issues, we use s = 1710
and € = 0.001. In our demonstration, we seeded two vortex particles
with vorticities of 4 and -4 at locations [0.4,0.85] and [0.6, 0.85],
respectively. We positioned a circle with a radius of 0.15 and the
center located at [0.5,0.8]. At each timestep, the vortex particles
were advected through a straightforward explicit Euler scheme, and
surface particles were advected as delineated in Section 4.1. We
calculated Vu using Sympy [Meurer et al. 2017]. The results are
displayed in Figure 29.
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